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This paper develops a framework for measuring “tipping”—the increase in a firm’s market share dominance
caused by indirect network effects. Our measure compares the expected concentration in a market to the

hypothetical expected concentration that would arise in the absence of indirect network effects. In practice, this
measure requires a model that can predict the counterfactual market concentration under different parameter
values capturing the strength of indirect network effects. We build such a model for the case of dynamic
standards competition in a market characterized by the classic hardware/software paradigm. To demonstrate
its applicability, we calibrate it using demand estimates and other data from the 32/64-bit generation of video
game consoles, a canonical example of standards competition with indirect network effects. In our example, we
find that indirect network effects can lead to a strong, economically significant increase in market concentration.
We also find important roles for beliefs on both the demand side, as consumers tend to pick the product they
expect to win the standards war, and on the supply side, as firms engage in penetration pricing to invest in
growing their networks.
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1. Introduction
We study the diffusion of competing durable goods in
a market exhibiting indirect network effects as a result
of the classic hardware/software structure (Katz and
Shapiro 1985). Of particular interest is whether such
markets are prone to tipping, which is “the tendency
of one system to pull away from its rivals in popu-
larity once it has gained an initial edge” (Katz and
Shapiro 1994, p. 106) and, in some instances, to emerge
as the de facto industry standard. As incompatible
hardware firms vie for market dominance, they may
engage in aggressive penetration pricing strategies,
battling for the initial advantage that will ultimately
tip the market in their favor. These “standards wars”
are widely regarded as a “fixture of the information
age” (Shapiro and Varian 1999, p. 8). An empirically
practical measure of tipping would therefore enable
researchers and practitioners to understand better the
diffusion dynamics of new hardware/software prod-
ucts and the emergence of a victor during a stan-
dards war.

The extant literature has yet to provide an empiri-
cally practical measure of tipping. We define tipping
herein as the degree of market share concentration
due to indirect network effects. It is typically very dif-
ficult, if not impossible, to assess tipping directly from
field data. In actual markets, product differentiation,
differences in costs, and other differences between
standards frequently lead to asymmetric market out-
comes, even in the absence of indirect network effects.
In essence, an empirical measure of tipping would
need to compare the expected concentration in a mar-
ket to the hypothetical expected concentration that
would arise if the sources of indirect network effects
were reduced or eliminated. The key insight is that
tipping generally needs to be measured relative to
a well-defined, counterfactual market outcome. Con-
structing a counterfactual market outcome using a
field experiment would be highly impractical. There-
fore, for an empirical implementation of this measure,
we instead need a model that captures indirect net-
work effects, can be calibrated from actual data, and
allows us to make predictions about the equilibrium
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adoption of the competing standards under various
different parameter values capturing the strength of
indirect network effects.1

We build a dynamic model that captures indirect
network effects and gives consumer expectations a
central role. Our model involves three types of players:
consumers, hardware manufacturers, and software
developers. The demand side of our model extends
the framework of Nair et al. (2004) and allows for
dynamic adoption decisions. Consumers are assumed
to “single-home,” meaning they adopt at most one
of the competing hardware standards.2 The utility
of each hardware standard increases in the avail-
ability and variety of complementary software. Con-
sumers form beliefs about future hardware prices and
software availability. These beliefs influence when
consumers adopt (the rate of diffusion) and which
standard they adopt (the size of each installed base).
On the supply side, forward-looking hardware firms
compete in prices while anticipating the impact of
hardware sales on the future provision of software
and, hence, future hardware sales. Software firms
provide a variety of titles that is increasing in the
installed base of a hardware standard. Our solution
concept for this model is a Markov perfect Bayesian
equilibrium. The complexity of the model makes ana-
lytical solution methods intractable, and hence we
solve the model numerically. Note that this motiva-
tion for the research herein was also reported in the
discussion piece by Bronnenberg et al. (2008).
To demonstrate our model and how it can be used

to measure tipping, we calibrate it with demand
parameter estimates and other market data from the
32/64-bit generation of video game consoles.3 The
video game console market is a canonical example
of indirect network effects. Furthermore, from pre-
vious empirical research, the 32/64-bit generation is
known to exhibit indirect network effects (Shankar
and Bayus 2003, Clements and Ohashi 2005). To
obtain our demand estimates, we adapt a two-step

1 Note that we focus herein on tipping and market dominance dur-
ing a specific hardware generation. A related theoretical literature
has also studied whether tipping can create inertia across hardware
generations when there are innovations (e.g., Farrell and Saloner
1986, Katz and Shapiro 1992, Markovich 2008). Therein, tipping, or
“excess inertia,” is defined by the willingness of consumers to trade
off the scale benefits of a current standard with a large installed
base in favor of a new technology without an installed base. Inter-
estingly, in this type of environment, network effects may also serve
as a potential barrier to entry (Cabral 2009).
2 Recent literature has begun to study the theoretical implications of
multihoming, whereby consumers may adopt multiple standards
and software firms may create versions for multiple standards
(Armstrong 2006).
3 This approach follows in the tradition of Benkard (2004) and Dubé
et al. (2005, 2009) by conducting counterfactual simulations of the
market outcomes using empirically obtained parameters.

procedure to solve our demand estimation problem
(e.g., Hotz and Miller 1993, Hotz et al. 1994, Bajari
et al. 2007, Pesendorfer and Schmidt-Dengler 2008).
A similar approach has recently been employed for
the estimation of a durable good exhibiting network
effects by Ryan and Tucker (2008).4

The calibrated model reveals that the 32/64-bit
video game console market can exhibit economically
significant tipping effects, given our model assump-
tions and the estimated parameter values. The market
concentration, as measured by the one-firm concen-
tration ratio in the installed base after 48 months,
increases by at least 24 percentage points due to indi-
rect network effects. We confirm the importance of
consumer expectations as an important source of indi-
rect network effects; in particular, if neither firm has
an initial installed base advantage, we find that tip-
ping occurs at a (monthly) consumer discount factor
of 0.9, but not for smaller discount factors. However,
if one firm has gained an initial installed base advan-
tage, tipping arises also for smaller discount factors.
Our model also predicts penetration pricing (for

small levels of the installed base) if indirect network
effects are sufficiently strong. We are specifically inter-
ested in the case where a firm prices below marginal
cost. In markets with strong network effects, firms lit-
erally price below cost during the initial periods of the
diffusion to invest in network growth. Interestingly,
the emergence of penetration pricing as an equilib-
rium strategy dissipates as we weaken (but do not
eliminate) the indirect network effects. In short, the
mere presence of indirect network effects does not per
se lead to penetration pricing. These findings build on
some of the earlier marketing literature that has dis-
cussed situations under which firms set a low price
at the launch of a new product and then increase
prices over time (e.g., Dean 1976, Jeuland and Dolan
1982, Kalish 1983, Dockner and Jørgensen 1988). Our
findings herein help clarify for managers the circum-
stances under which penetration pricing makes sense
from a dynamic perspective.
Our approach for measuring market concentration

as a result of tipping contributes to recent antitrust dis-
cussions about hardware/software markets, as high-
lighted in the recent high-profile case surrounding
the browser war between Microsoft and Netscape
(United States v. Microsoft, 87 F. Supp. 2d 30; Bresnahan
2001). The proposed framework also resolves some
of the concerns regarding the inability of existing
antitrust policies and tools to address the feedback

4 An interesting difference is that Ryan and Tucker (2008) use
individual-level adoption data, which enables them to accommo-
date a richer treatment of “observed” consumer heterogeneity. The
trade-off from incorporating more heterogeneity is that they are
unable to solve the corresponding dynamic hardware pricing game
on the supply side.
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dynamics in markets with indirect network effects
(e.g., Evans 2003, Koski and Kretschmer 2004, Evans
and Schmalensee 2007, Rysman 2007). Our dynamic
framework extends much of the extant empirical liter-
ature that either estimates the effects of indirect net-
work effects using demand only or treats the supply
side of the market as static (Gupta et al. 1999; Basu
et al. 2003; Bayus and Shankar 2003; Ohashi 2003;
Dranove and Gandal 2003; Nair et al. 2004; Karaca-
Mandic 2004; Park 2004; Rysman 2004, 2007; Clements
and Ohashi 2005; Ackerberg and Gowrisankaran 2006;
Ryan and Tucker 2008). Gandal et al. (2000) allow
for forward-looking consumers but they assume hard-
ware sponsors do not have a strategic role. More
recently, Liu (2010) and, most closely related to our
work, Jenkins et al. (2004) allow for forward-looking
hardware manufacturers. However, both papers treat
consumers as myopic.
The rest of this paper is organized as follows. Sec-

tion 2 lays out how indirect network effects can lead
to market concentration. Next, we describe the model
in §3, and in §4 we describe the data. In §5 we then
discuss how the model parameters are estimated, and
§6 details our estimation results. Section 7 demon-
strates via numerical experiments how tipping can
occur in this market. Section 8 concludes our paper.

2. Market Concentration in the
Presence of Indirect Network
Effects

We begin with a discussion of the economics of how
indirect network effects lead to market concentration.
We also provide a measure of the degree of mar-
ket concentration caused by indirect network effects
that should apply to most models of indirect net-
work effects in the literature. In the next section, we
develop a model that generalizes many of the theory
models and can be calibrated from demand estimates
and cost data.
We consider a market where consumers derive util-

ity from two complementary goods: hardware, such
as a video game console, and software, such as a
video game. Consumers only derive utility from soft-
ware if they also own compatible hardware. On the
supply side, we assume that there are two competing,
incompatible hardware standards, each sold by two
independent firms. The software market is monop-
olistically competitive, and no single software firm
can strategically influence the sales of either stan-
dard.5 Furthermore, we assume that there are returns

5 In some industries this assumption would not be valid. For
example, the decision made by Warner Brothers in January 2008
to discontinue its support of high-definition (HD) DVD was key
to the success of the Blu-ray format over the HD DVD standard.

to scale in the production of software such that the
variety of software for a standard is increasing in its
market size, i.e., the number of consumers who have
adopted the standard.
Even though consumers derive no direct utility from

the usage of hardware by other consumers, indirect
network effects arise in such a market as follows.
Each consumer’s utility from hardware is increasing in
the amount of available software. As more consumers
adopt a given hardware standard, the supply of com-
patible software increases. Therefore, a consumer’s
willingness to pay for a given hardware standard
is, indirectly, increasing in the cumulative number of
adopters of that standard—the current installed base
(e.g., Chou and Shy 1990, Church and Gandal 1993).6

If consumers are forward looking, their adoption deci-
sions will also be influenced by their expectations
about the future evolution of the installed base of
either standard.
Let yjt be the installed base of standard j in period t.

We normalize the market size to one, such that yjt is
also the cumulative share of the potential customer
base that standard j has obtained by period t. The cur-
rent state of the market can then be described by the
vector yt = �y1t� y2t�, where 0 ≤ y1t + y2t ≤ 1. All pos-
sible states are contained in the shaded triangles in
Figure 1. We assume that the demand and cost prim-
itives of the market are symmetric: both firms have
the same production costs, the consumers’ distribu-
tion of tastes for either standard is identical, and the
variety of software offered for either standard is the
same when both standards have the same installed
base.
Suppose that there are no indirect network effects.

For example, suppose that the supply of software is
independent of the installed base or that consumers
do not value software. The equilibrium evolution of
the market will then be symmetric, provided that
a symmetric equilibrium exists: the firms split the
market in each period, and both firms will always
have the same installed base. This case is depicted by
curve A corresponding to the initial state yA0 = �0�0� in
the top left-hand graph in Figure 1 (the points labeled
yAt correspond to the realized state vectors in periods
t = 0�1�2� � � � ). Hence, in the absence of indirect net-
work effects, this market would not become concen-
trated. Now suppose that firm 1 has gained an initial
advantage, possibly because of early entry, over firm 2
in terms of the installed base, such that y10 > y20 = 0�

Moreover, forward-looking software suppliers could be instrumen-
tal in tipping the market, much like the forward-looking consumer
we study herein.
6 Rochet and Tirole (2003) argue that most network effects arise in
an indirect manner.
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Figure 1 Market Evolution Under Different Scenarios: No Indirect Network Effects (Top Left), Positive Feedback (Top Right), and Multiple
Self-Fulfilling Equilibria (Bottom)
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This scenario corresponds to the initial state yB0 in Fig-
ure 1. Absent any indirect network effects, the equilib-
rium evolution of the market will still be symmetric
and the firms will split the total remaining market
size, 1−y10. Hence, in the absence of indirect network
effects, the only source of concentration in this market
would be due to the initial share advantage.
Now consider the general case with indirect

network effects. Two economic mechanisms lead to
market concentration (Katz and Shapiro 1994). First,
indirect network effects induce positive feedback. To
illustrate, consider again the case where standard 1
has gained an initial installed base advantage, corre-
sponding to the state yC0 in the top right-hand graph of
Figure 1. This initial advantage leads to the creation of
more software variety for standard 1 than for standard
2. Hence, more consumers will adopt standard 1 than
standard 2 in the initial period. This asymmetric adop-
tion rate reinforces the initial advantage of standard

1, creating positive feedback that leads to market con-
centration in favor of standard 1. Similarly, if standard
2 had gained an initial advantage, depicted by the
state yD0 , the market would have become concentrated
in favor of standard 2. Such positive feedback due to
indirect network effects arises even if there is a unique,
symmetric equilibrium characterizing the market. Pos-
itive feedback is related to the concept of path depen-
dence, pioneered by Arthur (1989) and David (1985,
2007) and defined as follows: small historical events
have an important influence on the eventual outcome
in a market.
A second source of market concentration is the

potential incidence of multiple equilibria, even if no
standard has gained an initial advantage. Multiple
equilibria arise if consumers are forward looking and
make their adoption decisions based on their expecta-
tions about the diffusion of each standard. In a rational
expectations equilibrium, the consumers’ expectations
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are consistent with the future evolution of the mar-
ket, allowing consumers to coordinate their adoption
choices. In one possible equilibrium all consumers
expect that standard 1 will gain most of the mar-
ket share. These expectations are self-fulfilling: due to
the large expected variety of software for standard 1,
most consumers will adopt standard 1. This case cor-
responds to the initial state yE0 in the bottom graph of
Figure 1. In another equilibrium, the consumers expect
that standard 2 will gain most of the market share, and
because of the self-fulfilling nature of these expecta-
tions, standard 2 will indeed attract most consumers.

2.1. Measuring Market Concentration Due to
Indirect Network Effects

The literature broadly refers to the emergence of a
dominant firm through positive feedback or multi-
ple equilibria as tipping. However, in spite of the
widespread use of the term tipping in the literature
on network effects, no single, precise definition exists.
For example, the survey by Katz and Shapiro (1994)
defines tipping as the “tendency of one system to pull
away from its rivals in popularity once it has gained
an initial edge.” Alternatively, according to the survey
by Farrell and Klemperer (2007, p. 2034):

We have seen how early choices are � � �able either to
help coordination or to wield disproportionate influ-
ence. Thus any early lead in adoptions (whether strate-
gic or accidental) will tend to expand rather than to
dissipate. Network markets are “tippy”: early instabil-
ity and later lock-in.

Deriving a more precise and empirically practical def-
inition is tricky. Some associate tipping with winner-
take-all outcomes, whereby a single dominant firm
emerges capturing the entire market. In practice,
many of the classic examples of markets that are
deemed to have tipped towards a single standard
do not have a single dominant firm. Consider for
example the standards war between VHS and Beta-
max in the VCR market. Even though VHS is widely
regarded as the victor, Betamax machines continued
to be manufactured until 2002. Similarly, we still
have a coexistence of AM and FM radio even though
the latter is widely regarded as the victor. There-
fore, defining tipping as a situation where one stan-
dard achieves 100% of the market share would be
too restrictive. A more useful and general definition
of tipping should be based on measuring the degree
of market concentration caused by indirect network
effects. In this section, we build an empirically imple-
mentable definition of tipping that encompasses 100%
market dominance as a special case but is applicable
more generally to any situation where concentration
occurs as a result of indirect network effects.

In the special case of a market with two symmet-
ric competitors, we could define a measure of tip-
ping by comparing the expected share of the installed
base for the larger standard, T periods after the prod-
uct launch, to a share of 50%, i.e., to the share in a
symmetric outcome. That is, we could measure tip-
ping as the extent to which the cumulative, one-firm
concentration ratio in period T exceeds 50%. In most
actual markets, however, the expected share of the
larger standard will exceed 50% even in the absence of
indirect network effects as a result of product differ-
entiation, cost differences across the standards, etc. To
assess tipping, we need to compare the expected share
in the installed base to the hypothetical share that
would arise if one or more economic factors that cause
indirect network effects were mitigated or entirely
eliminated. For this measure, we need a model to pre-
dict counterfactual market outcomes and to define the
(counterfactual) baseline case relative to which tip-
ping could be measured.7

We now provide a formal definition of the pro-
posed tipping measure. Suppose we know the data-
generating process of the installed base evolution.
Let � be the model parameters describing this pro-
cess. If the installed base evolution is described by
an economic model, � will contain all demand and
cost parameters describing the underlying model
primitives.
Let �jt be the share of standard j in the installed

base t periods after product launch:

�jt ≡
yj� t+1

y1� t+1+ y2� t+1
� (1)

Here, yj� t+1 is the installed base of standard j at
the end of period t, including the sales of j during
period t. The cumulative one-firm concentration ratio
after T periods is then given by

��yT �=max��1T ��2T ��
The realization of ��yT � depends on the model param-
eters�, an equilibrium that exists for these parameters
����� and a sequence of demand shocks �t . Given �
and ����, the distribution of �yt�Tt=0 is well defined,
and we can thus calculate the expected cumulative
one-firm concentration ratio

C1��������≡ Ɛ���yT � ��������� (2)

7 Note that because of demand shocks or other random events,
the expected cumulative one-firm concentration ratio could signifi-
cantly exceed 50% in a market with symmetric competitors even if
there were no indirect network effects. In this situation, the differ-
ence between the cumulative one-firm concentration ratio and 50%
would not provide a meaningful measure of tipping even in the
symmetric case.
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Let �′ be a variation of the model where one or
more parameters that govern the strength of indi-
rect network effects are changed compared to the
model described by �, and let ���′� be a correspond-
ing equilibrium. We can thus measure tipping, the
increase in market concentration as a result of indirect
network effects, as follows:

�C1 =C1��������−C1��
′����′��� (3)

If we knew that the market under investigation was
symmetric, then C1 ≈ 0�5 in the absence of indirect
network effects, and we could measure tipping by
�C1 =C1��������− 0�5.8
Our discussion highlights that the increase in mar-

ket concentration due to indirect network effects can
only be measured relative to a well-defined coun-
terfactual market outcome. In most cases of inter-
est, this counterfactual outcome is not observed. First,
we hardly ever observe the evolution of the same
standards more than once under identical conditions.
Second, we would have to observe some diffusion
paths that are not affected by indirect network effects.
Therefore, in practice one will seldom be able to mea-
sure the degree of tipping or even to assess the inci-
dence of tipping in observed market data. Instead,
one will need an economic model that accounts for
the underlying causes of indirect network effects and
that can be used to simulate the equilibrium evolu-
tion of the market. Such a model would need to be
calibrated with demand and cost estimates or other
data sources. In the next section, we develop a model
that satisfies these requirements.

3. Model
We consider a market with competing hardware plat-
forms. A consumer who has adopted one of the avail-
able technologies derives utility from the available
software for that platform. Software titles are incom-
patible across platforms. Consumers are assumed to
choose at most one of the competing hardware plat-
forms and to purchase software compatible with the
chosen hardware, a behavior Rochet and Tirole (2003)
term “single-homing.” There are indirect network
effects in this market, which are due to the depen-
dence of the number of available software titles for a
given platform on that platform’s installed base. The
consumers in this market have expectations about the
evolution of hardware prices and the future availabil-
ity of software when making their adoption decisions.
Correspondingly, the hardware manufacturers antici-
pate the consumer’s adoption decisions and set prices
for their platforms accordingly. The software market

8 Once again, this would not be accurate if random shocks had a
significant impact on the market evolution.

is monopolistically competitive, and the supply of
software titles for any given platform is increasing in
the platform’s installed base.
Time is discrete; t = 0�1� � � � � The market is pop-

ulated by a mass M = 1 of consumers. There are
J = 2 competing firms, each offering one distinct hard-
ware platform. The installed base of platform j in
period t—i.e., the fraction of consumers who have
adopted j in any period previous to t—is denoted by
yjt ∈ �0�1�. The state of the market is described by
yt = �y1t� y2t�.
In each period, platform-specific demand shocks �jt

are realized. �jt is private information to firm j ; i.e.,
firm j learns the value of �jt before setting its price
but learns the demand shock of its competitor only
once sales are realized. As we shall see later, �jt can
strongly influence the final distribution of shares in
the installed base. In particular, the realizations of �jt
in the initial periods of competition can lead the mar-
ket to “tip” in favor of one standard. Also, �jt will
typically ensure that the best response of each firm
is unique, and thus ensures the existence of a pure
strategy equilibrium.9 We assume that the demand
shocks are independent and identically distributed
(i.i.d.) through time; �j�·� denotes the probability den-
sity function (pdf) of �j , and ��·� denotes the pdf of
� = ��1� �2�.
The timing of the game is as follows:
1. Firms learn their demand shock �jt and set a

product price, pjt .
2. Consumers adopt one of the available platforms

or delay their purchase decisions.
3. For each platform j , software firms supply a

given number of titles, njt .
4. Sales are realized, and firms receive their profits.

Consumers derive utility from the available software
titles and—in the case of new adopters—from the cho-
sen platform.

3.1. Software Market
The number of available software titles for platform
j in each period is a function of the installed base of
platform j� njt = hj�yj� t+1�� To see why njt is a func-
tion of yj� t+1 and not yjt , note that yjt denotes the
installed base at the beginning of period t, whereas
yj� t+1 denotes the total installed base after the poten-
tial adopters have made a purchase decision. The soft-
ware producers observe this total installed base before
they supply a given number of titles.

9 We are not able to prove this statement in general but could easily
verify it across all versions of our model that we solved numerically
on a computer. In general, the right-hand side of the firm’s Bellman
equation, regarded as a function of price of firm j at time t pjt , has
two local maxima. The realization of �jt ensures that these local
maxima are not equal.
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Although this relationship may seem ad hoc, we
show in Appendix A how this relationship between
njt and yj� t+1 can be derived from a structural model
of monopolistic competition and constant elasticity of
substitution (CES) software demand in the software
market. These assumptions abstract away from some
of the dynamic aspects of game demand (e.g., Nair
2007), but they retain the fundamental interdepen-
dence between software and hardware.

3.2. Consumer Decisions
Consumers make their adoption decisions based on
current prices and their expectation of future prices
and the availability of compatible software titles. Con-
sumers expect that the installed hardware evolves
according to yt+1 = f e�yt� �t� and that firms set prices
according to the policy function pjt =  e

j �yt� �jt�. Con-
sumers observe both �t and the current price vector
pt before making their decisions.
Consumers who have already adopted one of the

platforms receive utility from the available software in
each period. Because the supply of software is a func-
tion of the installed base at the end of a period, we can
denote this utility as uj�yj� t+1�= "njt = "hj�yj� t+1�. The
present discounted software value is then defined as

#j�yt+1�= Ɛ

[ �∑
k=0

%kuj�yj� t+1+k�
∣∣∣yt+1

]
�

This value follows the recursion

#j�yt+1�= uj�yj� t+1�+%
∫
#j�f

e�yt+1� �������d�� (4)

Consumers who have not yet adopted either buy
one of the hardware platforms or delay adoption. The
choice-specific value of adopting hardware platform j
is given by

vj�yt� �t� pt�= (j +#j�f
e�yt� �t��−)pjt + �jt� (5)

Here, (j is the value of owning a specific hardware
platform or the value of bundled software; ) is the
marginal utility of income. The realized utility from
adopting j also includes a random utility compo-
nent *jt . That is, the total utility from the choice of j is
given by vj�yt� �t� pt�+ *jt . We assume that *j is i.i.d.
type I extreme value distributed.
The value of waiting is given by

v0�yt� �t�

= %
∫
max

{
v0�yt+1� ��+ *0�

max
j

{
vj�yt+1� �� 

e�yt+1� ���+ *j
}}

·�*�*�����d�*���� (6)

In this equation, yt+1 = f e�yt� �t�.

Consumers choose the option that yields the
highest choice-specific value, including *jt . That is,
option j is chosen if and only if for all k �= j ,
vj�yt� �t� pt�+ *jt ≥ vk�yt� �t� pt�+ *kt .10 Given the dis-
tributional assumption on the random utility compo-
nent, the market share of option j is

sj �yt� �t� pt� =
exp�vj�yt� �t� pt��

exp�v0�yt� �t��+
∑J

k=1 exp�vk�yt� �t� pt��
�

(7)

Furthermore, the installed base of platform j evolves
according to

yj�t+1=yjt+
(
1−

J∑
k=1
ykt

)
sj �yt��t�pt�=fj�yt��t�pt�� (8)

3.3. Firms
Firms set prices according to the Markovian strate-
gies pj =  j�y��j�; i.e., prices depend only on the
current payoff-relevant information observed to each
competitor. Firms expect that the consumers make
adoption decisions according to the value functions
v0� � � � � vJ , and accordingly that market shares are real-
ized according to Equation (7) and that the installed
base evolves according to (8).
The marginal cost of hardware production is cj ,

which we assume to be constant through time. The
firms also collect royalty fees from the software man-
ufacturers at the rate of rj per unit of software. Let
qj�yt+1� be the total number of software titles sold in
period t.11 The per-period expected profit function is
then given by

/j�y��j� pj�

= �pj − cj � ·
(
1−

J∑
k=1

ykt

)

·
∫
sj �y� �j� �−j � pj� −j �y� �−j ���j��−j � d�−j

+ rj

∫
qj�fj �y� �j� �−j � pj� −j �y� �−j ����j��−j � d�−j �

Each competitor maximizes the expected present
discounted value of profits. Associated with the solu-
tion of the intertemporal pricing problem is the
Bellman equation

Vj�y��j� = sup
pj≥0

{
/j�y��j�pj�+%f

∫
Vj�f �y��j��−j �pj�

 −j �y��−j ����
′
j ����−j ����

′
j �d��−j ��

′
j �
}
� (9)

10 These inequalities involve some slight abuse of notation, as
v0�y��� is not a function of p.
11 qj �yt+1�= q̄j �njt� · yj� t+1� where q̄j denotes the average number of
titles bought by a consumer. See Appendix A for the derivation of
this equation within the context of a specific model. For our model
simulations, we estimate qj �y� directly from the data.
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Here, we allow for the possibility that firms and con-
sumers discount the future at different rates, % �= %f .

3.4. Equilibrium
We seek a Markov perfect Bayesian equilibrium,
where firms and consumers base their decision only
on the current payoff-relevant information. Con-
sumers have expectations about future hardware
prices and the evolution of the installed base of each
platform and the associated supply of software. The
adoption decisions are dependent on these expec-
tations. Firms have expectations about the adop-
tion decisions of the consumers, the evolution of the
installed base, and the pricing decisions of their com-
petitors. Pricing decisions are made accordingly. In
equilibrium, these expectations need to be mutually
consistent.
Formally, a Markov perfect Bayesian equilibrium

in pure strategies of the network game consists of
consumer expectations f e and  e, consumer value
functions vk, pricing policies  j , and the firm’s value
function Vj such that
1. The consumer’s choice-specific value functions

v1� � � � vJ satisfy (5), and the value of waiting, v0, sat-
isfies (6).
2. The firm’s value functions V1� � � � �VJ satisfy the

Bellman equations (9).
3. pj =  j�y��j� maximizes the right-hand side of

the Bellman equation (9) for each j = 1� � � � � J �
4. The consumer’s expectations are rational:  e

j ≡  j
for j = 1� � � � � J � and f e�y���= f �y��� �y����� where
f is as defined by Equation (8).
In the Markov perfect equilibrium, all players—

firms and consumers—act rationally given their
expectations about the strategies of the other market
participants. Furthermore, expectations and actually
realized actions are consistent.

4. Data
To make our computational results more realistic, we
use data from the 32/64-bit generation of video game
consoles, one of the canonical examples of indirect
network effects. To understand the relevance of this
case study to our model and our more general point
about tipping in two-sided markets, we briefly out-
line some of the institutional details of the industry.
We then discuss the data.

4.1. The U.S. Video Game Console Industry
The market for home video game systems has exhib-
ited a two-sided structure since the launch of Atari’s
popular 2600 VCS console in 1977 (Williams 2002).
Much like the systems today, the VCS consisted of
a console capable of playing multiple games, each
on interchangeable cartridges. Although Atari initially
developed its own proprietary games, ultimately more

than 100 independent developers produced games for
Atari and more than 1,000 games were released for
Atari 2600 VCS (Coughlan 2001a). This same two-
sided market structure has characterized all subse-
quent console generations, including the 32/64-bit
generation we study herein.
The 32/64-bit generation was novel in several ways.

None of the consoles was backward compatible, elim-
inating concerns about a previously existing installed
base of consumers that might have given a firm an
advantage. This was also the first generation to adopt
CD-ROM technology although early entrants Philips
and 3DO failed as a result of their high console
prices of $1,000 and $700, respectively. In contrast,
the September 1995 U.S. launch of Sony’s 32-bit CD-
ROM console PlayStation was an instant success. So
much so that its competitors, Sega’s 32-bit Saturn con-
sole, and later Nintendo’s 64-bit N64 cartridge console,
failed to recapture Sony’s lead. In fact, Sega’s early
exit from the market implied a duopoly console mar-
ket between Sony’s first-generation PlayStation and
Nintendo’s N64.
PlayStation’s success reflected several changes in

the management of the console side of the market.
From the start, Sony’s strategy was to supply as many
games as possible, a lesson it learned from its experi-
ence with Betamax video technology:

Sony’s primary goal with respect to PlayStation was
to maximize the number and variety of games � � � �
Sony was willing to license any PlayStation soft-
ware that didn’t cause the hardware to “crash.”
Coughlan (2001b)

To stimulate independent game development, Sony
charged substantially lower game royalties of $9, in
contrast with Nintendo’s $18 (Coughlan 2001c). Sony’s
CD-based platform also lowered game development
costs, in contrast with Nintendo’s cartridge based sys-
tem. Although the PlayStation console failed to pro-
duce any truly blockbuster games during its first year
(Kirkpatrick 1996), after three months, PlayStation’s
games outnumbered those of Sega’s Saturn by three
to one. By 1998, more than 400 PlayStation titles
were available in the United States. In addition, Sony
engaged in aggressive penetration pricing of the con-
sole early on, hoping to make its money back on game
royalties (Cobb 2003).
In contrast, Nintendo maintained very stringent

conditions over its game licensees, a legacy from its
management of game licensees during earlier gener-
ations when Nintendo was dominant.12 By Christmas
of 1996, N64 only had eight games in contrast with

12 The dominance of Nintendo’s 8-bit NES console during the 1980s
allowed it to command 20% royalties in addition to a manufactur-
ing fee of $14 per game cartridge. Licensees were also restricted
to five new NES titles per year. Nevertheless, by 1991, less than
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roughly 200 PlayStation titles (Rigdon 1996). By June
1997, N64 still had only 17 games whereas Play-
Station had 285. Nintendo insisted that it competed
on quality rather than quantity, and in 1997 its CEO
claimed, “Sony could kill off the industry with all of
‘its garbage’ ” (Kunii 1998). In the end, the dominance
of Sony Playstation in the 32/64-bit console gener-
ation was attributed primarily to its vast library of
games rather than to specific game content.
Recall that our case study focuses only on the

32/64-bit console generation. The success of Play-
Station’s game proliferation strategy makes us com-
fortable with the assumption that game variety prox-
ies meaningfully for the indirect network effects. This
assumption would be more tenuous for more recent
console generations now that blockbuster games have
become more substantial. For example, the block-
buster game Halo 3, for Microsoft’s Xbox 360, gen-
erated $300 million in sales during its first week
(Blakely 2007). At the same time, monthly Xbox
360 console sales nearly doubled in contrast with two
months previously, selling 527,800 units in October
2007 (Gallagher 2007). Similarly, PlayStation 3’s Spi-
derman 3 grossed $151 million during its first week
(Blakely 2007). The blockbuster games of the 32/64-bit
generation were smaller in magnitude. Only three
N64 games garnered over 4% of total U.S. game unit
sales on the N64 platform (GoldenEye 007, Mario Kart
64, and Super Mario 64), whereas an additional 21
games captured over 1% of total game sales. Only
five PlayStation titles captured over 1% of total Play-
Station game sales, none capturing over 2%.13 Nair
(2007) tests for blockbuster game effects during this
generation. He finds no material impact on sales or
prices of games in the months leading up to the
launch of a best-selling game. Therefore, Nair ignores
competitive effects in his analysis of video game pric-
ing during this generation.

4.2. Data
Our data are obtained from NPD Techworld’s point
of sale database. The database consists of a monthly
report of total sales and average prices for each video
game console across a sample of participating U.S.
retailers from September 1995 to September 2002.
NPD states that the sheer size of the participating
firms represent about 84% of the U.S. retail mar-
ket. We also observe the monthly number of game
titles available during the same period. We define the

10% of titles were produced by Nintendo, and the system had over
450 titles in the United States. In addition, one in three U.S. house-
holds had an NES console by 1991, with the average console owner
purchasing eight or nine games (Coughlan 2001b).
13 These numbers are based on U.S. game sales data collected by
NPD.

potential market size as the 97 million U.S. house-
holds as reported by the U.S. Census.
In the data, we observe a steady decline in console

prices over time. At first glance, this pattern seems
inconsistent with the penetration pricing motive one
would expect from our model. However, Playstation
is estimated to have launched at a price roughly $40
below marginal cost (Coughlan 2001b), and console
prices have been documented to have fallen more
slowly than costs over time, the latter as a result
of falling costs of chips (Liu 2010). The rising mar-
gins over time are consistent with penetration pric-
ing. Although we do not observe marginal costs, we
control for falling costs by including a time trend
as a state in the empirical model. Thus, our empiri-
cal model is consistent with a richer game in which
firms face falling marginal costs. We include this time
trend in the set of exogenous variables that drive
both the pricing strategies zpt and the demand func-
tion zdt , thereby treating the time trend as a com-
monly observed state. In addition, we experiment
with producer price indices (PPIs) from the U.S.
Bureau of Labor Statistics for computers, computer
storage devices, and audio/video equipment to con-
trol for technology costs associated with a console.
Finally, we also experiment with the inclusion of the
exchange rate (Japanese yen per U.S. dollar) to con-
trol for the fact that parts of the console are sourced
from Japan. These two sets of cost-shifting variables,
PPIs and exchange rates, are included in zpt . However,
because we do not expect these costs to be observed
by consumers when they make console purchase deci-
sions, we exclude them from zdt .
The empirical model also includes monthly fixed-

effects to control for the fact that there are peak
periods in console demand (e.g., around Christmas).
These states are observed by both firms and con-
sumers and, hence, enter both zpt and zdt . For the policy
simulations, we will ignore the effects of time, month,
and cost shifters because they are incidental to our
theoretical interest in tipping.
Descriptive statistics of the data are provided in

Table 1. The descriptive statistics indicate a striking
fact about competition between Sony PlayStation and
Nintendo 64. On average, the two consoles charged
roughly the same prices. However, Sony outsold

Table 1 Descriptive Statistics

Console Mean Std. dev. Min Max

Sales PlayStation 275,409 288,675 26,938 1,608,967
Nintendo 192,488 201,669 1,795 1,005,166

Price PlayStation 119�9 30�3 55�7 200�6
Nintendo 117�6 33�9 50�3 199�9

Game titles PlayStation 594�2 381�1 3 1,095
Nintendo 151�2 109�9 1 281
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Nintendo by almost 50%. At the same time, over 3.5
times as many software titles were available for Sony
than for Nintendo. Of interest is whether and how
much of Sony’s share advantage can be attributed to
its large pool of software titles.

5. Estimation
5.1. Demand Estimation
Part of the calibration exercise involves estimating
the structural demand parameters using the video
game data described above in §4. We briefly outline
the approach used to obtain demand estimates for
our dynamic discrete choice model using field data.
Technical details of the estimation are provided in
Appendix B.
One of the main elements of a model of durable

goods demand is the incorporation of consumer
beliefs about their future utilities and, hence, future
realizations of the state variables (Horsky 1990,
Melnikov 2000, Song and Chintagunta 2003, Nair
2007, Prince 2008, Carranza 2006, Gowrisankaran and
Rysman 2009, Gordon 2009, Goettler and Gordon
2009). In practice, consumers’ beliefs are not observed
by the researcher and need to be estimated. Some
elements of the beliefs could be obtained by solving
the economic model. For instance, beliefs about future
growth in the installed base could be obtained by
nesting the solution to the consumers’ dynamic adop-
tion decision into the demand estimation procedure,
hereafter referred to as the nested fixed-point (NFP)
approach (e.g., Melnikov 2000, Nair 2007). However,
for our hardware/software model, the dimension of
the state space (yt , �t , and other exogenous states
included in the empirical specification) is prohibitively
high for this approach.
Instead, we follow a recent tradition in the empiri-

cal literature on dynamic games and follow the insight
in Hotz and Miller (1993) and Hotz et al. (1994) by
estimating the structural parameters of our model in
two stages. The goal is to construct moment conditions
that match the observed market shares in the data
with those predicted by our model; see Equation (7).
Rather than computing the choice-specific value func-
tions (5) and (6) needed to evaluate demand, as in the
NFP approach, we simulate them. For the simulation,
we first need the distribution of consumer beliefs. We
assume that consumers form rational expectations. In
this manner, we can estimate their beliefs directly from
the field data. The estimation of the empirical distri-
bution of the state variables—namely, prices, software,
and adoption—constitutes the first stage. Note that
previous research using a NFP approach also typically
have a first stage in which they estimate beliefs about
supply-side state variables, such as prices. The exact

details for both stages of the estimation procedure are
provided in Appendix B.
Most empirical applications of the two-step

approach for estimating a dynamic model cannot
truly estimate beliefs nonparametrically, as would be
required theoretically in the Hotz and Miller (1993)
framework. Like most applications, our first stage is
parametric. A concern in the context of durable goods
markets is that the time-series data are inherently
nonstationary because of the diffusion process. There-
fore, even with an infinitely long time series, one
could never estimate beliefs nonparametrically. This
problem also applies to NFP applications that estimate
portions of consumer beliefs (i.e., beliefs about prices)
directly from the data. One solution would be to pool
data from multiple independent markets. Pooling
markets requires the strong assumptions that all
markets are in the same long-run equilibrium and
that all markets have the same parameters (e.g.,
consumer tastes are the same across markets) in order
to estimate beliefs. For instance, Nair (2007) assumes
that individual video games are sold and marketed
independently, but they are priced in a similar fash-
ion. Hence, different games are assumed to constitute
different markets. A related solution might consist of
pooling independent geographic (e.g., city) markets
(e.g., Ryan 2006). The lack of variation in console
prices and game supply across U.S. cities limits the
advantages of this type of pooling.

5.2. Identification
Like most of the extant literature estimating struc-
tural models of durable goods demand, our diffusion
data contain only a single time series for the U.S.
market.14 The use of a single time series creates sev-
eral generic identification concerns for durable goods
demand estimation in general. The first and most crit-
ical concern is the potential for sales diffusion data to
exhibit dependence over time as well as interdepen-
dence in the outcome variables. In addition, the diffu-
sion implies that any given state is observed at most
once, a property that could complicate the estimation
of beliefs. Finally, we also face the usual potential for
price endogeneity to bias demand parameters if prices
are correlated with the demand shocks � (Berry 1994).
We now briefly discuss the intuition of our empirical
identification strategy.
Diffusion data may naturally exhibit dependence

over time in prices, pt , and an interdependence
between prices and the other outcome variables, yt
and nt . A concern is whether we can separately iden-
tify the price coefficient ) and the software taste (i.e.,

14 An interesting exception is Gupta et al. (1999), who use panel data
on individual HDTV adoption choices obtained from a conjoint
experiment.
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the indirect network effect) ". Our solution consists
of adding console cost-shifting variables, PPIs and
exchange rates, that vary prices but that are excluded
from demand and from software supply. The exclu-
sion restrictions introduce independent variation in
prices and, hence, in the term )pt in the utility func-
tion. The exchange rates are particularly helpful in
this regard because they introduce independent vari-
ation over time—past research has documented that
short-run exchange rate innovations follow a random
walk (e.g., Meese and Rogoff 1982, Rogoff 2008). The
exclusion restrictions embody a plausible assumption
that consumers do not observe the PPIs and exchange
rates, and hence, they do not adjust their expectations
in response to them.
A related concern is whether we can separately

identify the role of product differentiation (j (i.e., one
standard has a higher share because of its superior
technology) and the indirect network effects " (i.e.,
one standard has a higher share because of its larger
installed base, which in turn stimulates more software
variety) on demand. Our assumption of single hom-
ing (i.e., discrete choice), a reasonable assumption for
this generation of video game consoles, enables us
to infer preferences from aggregate market shares. In
addition, we hold each console’s quality fixed over
time. Thus, we can identify the current utility of soft-
ware (i.e., the indirect network effect) using variation
in the beginning-of-period installed base yt .
We also face the usual concerns about endogene-

ity bias due to prices (e.g., Berry 1994). We do not
have a specific console attribute or macro taste shock
in mind when we include � in the specification; how-
ever, we include it as a precautionary measure. We
are reasonably confident � is not capturing the impact
of unmeasured blockbuster games.15 Nevertheless, to
the extent that � captures demand information that is
observed by firms, any resulting correlation between
prices and � could introduce endogeneity bias. Our
joint-likelihood approach to the first stage does pro-
vide a parametric solution to the endogeneity prob-
lem through functional form assumptions. We have
imposed a structure on the joint distribution of the
data that provides us with the relationship between
prices and demand shocks, �. However, we can relax
this strong parametric condition by using our console
cost shifters. Both the exchange rate and the PPIs pro-
vide sources of exogenous variation in prices that are
excluded from demand and that are unlikely to be
correlated with consumer tastes for video game con-
soles, i.e., �. In essence, the endogeneity is resolved by

15 We checked the correlation between the � estimates from our first
stage and the one-firm concentration ratio of video game sales for
each console (based on NPD data). Game concentration explains
less than 1% of the variation in PlayStation’s � versus 11% of
N64’s �.

including the control function X�yjt� pjt� z
p
t � in the log-

odds of choices; see Equation (A4) in the Appendix A
(e.g., Petrin and Train 2006, 2010).
A related software endogeneity concern arises in

our model. Recall that the current period’s software
supply is determined by the end-of-period installed
base: njt = hj�yj� t+1�� Therefore, software is correlated
with the demand shocks �t indirectly through their
correlation with the end-of-period installed base yt+1.
Our control function X�yjt� pjt� z

p
t � also resolves this

endogeneity.
As a final point, we do not believe that our data

are rich enough to estimate the distribution of het-
erogeneity in consumer tastes. Clearly, we do not
believe in practice that consumers have no persistent
differences in tastes. However, once we condition on
all the state variables, there is little variation left in
the data to identify non-IIA comovements in market
shares, which in turn would identify heterogeneity.
The extant literature that estimates unobserved het-
erogeneity from aggregate market share data relies
on the availability of many independent markets
(e.g., Berry et al. 1995 and the related literature).
In consumer packaged goods product categories, for
instance, researchers can exploit sales from many dif-
ferent stores, each charging different prices for the
same goods. Supermarkets also regularly run tempo-
rary price discounts, generating large swings in the
observed market shares. In the video game console
market, such store-level data are unavailable. More-
over, the indirect network effects arise from intercon-
nection between the national supply of games and
the national installed base of consoles. Hence, indi-
vidual stores would not per se constitute independent
product markets. In the electronic companion, avail-
able as part of the online version that can be found
at http://mktsci.pubs.informs.org, we attempt to esti-
mate a model that incorporates unobserved hetero-
geneity. Our findings indicate that model fit worsens
once heterogeneity is added: the penalty associated
with the extra parameters characterizing heterogene-
ity outweigh the improvements in the likelihood. We
therefore conclude that our data are not sufficiently
rich to identify heterogeneity.

6. Estimation Results
6.1. First Stage
During the first stage, we experiment with several
specifications. These specifications vary by the man-
ner in which the state variables enter the first stage
estimation equations. In Table B.1, which is included
in Appendix B, we report the log-likelihood and
Bayesian information criterion (BIC) associated with
each specification.
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Our findings indicate that allowing the states to
enter the first-stage relationships for pricing strate-
gies (�j , as per Appendix B) and demand function
��j , as per Appendix B) both linearly and quadrat-
ically improves fit substantially based on the BIC
predictive fit criterion (model 3 versus model 2).
Allowing for a time trend also improves fit mod-
erately (model 2 versus model 1). We use a time
trend that is truncated after 60 periods because prices
roughly level off after that point (i.e., we do not expect
costs to decline indefinitely). We also experimented
with a more flexible distributional assumption for
the demand shocks, �. We use a mixture-of-normals
specification to check whether the assumption of nor-
mality potentially biases our maximum likelihood
estimates. However, we find little change in fit from
the two-component mixture (model 4 versus model 3).
Moving to the last three rows (models 5, 6, and 7),
we look at the implications of including additional
cost proxies into the pricing function that are excluded
from the game supply and from the consumer choices.
Recall these are terms we include in zpt , but we do not
include in zdt . We use a three-month lag and seven-
month lag in the exchange rate as they were found to
explain more price variation than the contemporane-
ous exchange rate, which is likely because production
is sourced in advance of sales. The inclusion of these
terms in the price equation improves the overall likeli-
hood of the first stage (as seen by the BIC for model 7).
Although not reported in the tables, a regression

of log-prices on the various price shifters, including
the PPIs and the exchange rate, generates an R2 of
0.9. Similarly, the ordinary least-squares regression for
the game titles generates an R2 of 0.98. In the case of
log-odds, the inclusion of � makes it hard to interpret
an R2. Instead, we construct a distribution of � using a
parametric bootstrap from the asymptotic distribution
of the parameters in the price regressions. The mean
R2 of a regression of log-odds on the observed states
and the simulated � is 0.95. Overall, the first-stage
model appears to fit the data well.
A critical aspect of the two-step method is

that the first-stage model captures the relationship
between the outcome variables and the state vari-
ables. To assess the fit of the first-stage estimates, in
Appendix B, Tables B.2, B.3, and B.4 report all the
first-stage estimates and their standard errors. Most
of the estimates are found to be significant at the
95% level. In Table B.4, we find a positive relation-
ship between software variety and the installed base
of each standard. Analogous findings are reported in
Clements and Ohashi (2005).
Figures B.1, B.2, and B.3, which are also contained

in Appendix B, plot the true prices, log-odds, and
games, respectively, under each standard. In each
case, we plot the outcome variable for a standard

Table 2 Second-Stage Parameter Estimates

Model 3 Model 7

Estimate Std. error Estimate Std. error

�Sony −1�21 0�89 −1�119 0�971
�N64 −1�34 0�87 −1�119 1�093
� −1�94 0�52 −1�923 0�460
Time (<60) −0�04 0�01 −0�049 0�028
� (njt /1,000) 0�09 0�04 0�090 0�040
	 (std. dev. of 
jt ) 0�05 0�09 0�028 1�950

Notes. Model 7 uses PPIs and exchange rates as instruments in first stage.
�= 0�9; number of simulations= 60.

against its own installed base (reported as a frac-
tion of the total potential market, M = 97�000�000).
In addition, we report a 95% prediction interval for
each outcome variable based on a parametric boot-
strap from the asymptotic distribution of our param-
eter estimates.16 In several instances, the observed
outcome variable lies slightly outside the prediction
interval. However, overall, our first-stage estimates
appear to do a reasonably good job preserving the
relationship between the outcome variables and the
installed base.

6.2. Second Stage
We report the structural parameters from the second
stage in Table 2. Note that the parameters of inter-
est here are the structural parameters 4= �(�)�"�5�,
where (= �(s� (N � are the intrinsic preferences for the
Sony and Nintendo consoles, ) is the price sensitivity
parameter, " is the current period software utility and
5 is the standard deviation of the demand shocks.
Results are reported for two specifications: models 3
and 7, as described in §6.1. Recall that model 3 does
not have any exclusion restrictions across equations
in the first stage. Model 7, the best-fitting model over-
all in stage 1, includes PPIs and exchange rates in
the price equations. To estimate the second stage of
the model, we maintain the assumption that con-
sumers do not observe realizations of these costs.
Instead, we assume they observe prices each period
and can integrate the innovations to prices out of their
expected value functions.17 The results are based on
an assumed consumer discount factor of %= 0�9 and

16 The prediction intervals are constructed as follows. Five thou-
sand draws are generated from the asymptotic distribution of the
first-stage parameter estimates. We then compute the predicted
log-price, log-odds, and log of game titles corresponding to each
parameter draw. We then plot the 5th and 95th percentiles of these
values.
17 To estimate the distributions of these various costs, we assume
they all follow a random walk distribution with drift. Thus, we
regress each cost on its one-period lag along with an intercept and
an i.i.d. shock. For the PPIs, we obtain an R2 of 0.99, whereas for
the exchange rates, we obtain an R2 of 0.89.
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60 simulated histories18 of 500 periods in length each.
Although not reported, we also included monthly
fixed effects in tastes.
First, both model specifications each appear to yield

qualitatively similar results. Although the point esti-
mates suggest a slight preference for the Sony Play-
Station console, the difference in tastes between the
two consoles is statistically insignificant. This find-
ing is consistent with industry observers who noted
that the improvements from 32- to 64-bit technology
were much less dramatic than in previous genera-
tions (Coughlan 2001c). Rather, the variety of avail-
ability of games tended to be the main differentiator.
Indeed, the taste for software variety, ", is positive
and significant. In both specifications, " is roughly
0.1. The effective “network effect” in the model arises
from the positive (and significant) software taste on
the demand side, ", and the positive (and significant)
elasticity of each standard’s supply of software titles
with respect to its installed base, 7Sony and 7Nintendo
(as in Table B.4). The qualitative implications of these
estimates are best understood in the context of our
simulations in §7.

7. Model Predictions
In §2, we proposed an approach to measure tipping,
or the extent of market concentration caused by indi-
rect network effects. Our measure consists of compar-
ing the expected market concentration in the presence
of indirect network effects to the counterfactual mar-
ket concentration that would arise if indirect network
effects were reduced or eliminated:

�C1 =C1��������−C1��
′����′���

We illustrate our approach by calibrating the model
developed in §3 with empirical estimates from the
32/64-bit video game console market. The parameters
consist of the demand estimates and software supply
function estimates, from model 7 in §6, and industry
estimates of hardware console production costs and
royalty fees.19 For a given set of parameter values,
we solve for a Markov perfect Bayesian equilibrium
of the model and then simulate the resulting equilib-
rium price and adoption paths. Appendix C provides
details on the algorithm used to compute the equilib-
ria of the model.
Indirect network effects in our model arise both

through the consumers’ current marginal utilities of

18 Because the second-stage estimator is linear in the simulation
error, the choice of the number of draws only influences efficiency.
19 Cost and royalty data are reported in Liu (2010) and based on
various industry reports. The marginal production costs are $147
(Sony) and $122 (Nintendo) and correspond to Liu’s cost estimates
20 months after the launch of Nintendo 64. The royalty fees per
game sold are $9 (Sony) and $18 (Nintendo).

software " and their discount factors %. Both these
parameters moderate the interaction between con-
sumers’ expectations about the future availability of
software for each standard and their current adop-
tion decisions. By conducting numerical experiments
that change the values of % and ", we can assess how
the magnitude of indirect network effects affect mar-
ket concentration as well as equilibrium diffusion and
pricing. We also examine how an initial market share
advantage, or “first-mover” advantage, for one of the
hardware suppliers moderates the impact of indirect
network effects on market concentration.
Our model abstracts from certain aspects of the

32/64 hardware market—in particular, learning by
doing (declining production costs) and persistent het-
erogeneity in consumer tastes. In this respect, we
caution that our predictions should not be interpreted
as attempts to explain literally the observed, historic
evolution of the market.

7.1. Preliminaries
We first summarize specific aspects of the model
solutions and simulations. Firms and consumers
make decisions at the monthly level. Throughout, we
assume that firms discount future profits using the
factor %f = 0�99.20 However, we will consider various
consumer discount factors across the different simu-
lations. To simplify the exposition, we also normalize
the market size to M = 1.21
We summarize the firms’ equilibrium pricing strate-

gies by the expected pricing policies Ɛ�pjt � yt� =
Ɛ�j � j�yt� �j� � yt�. Here, the expectation is taken over
the firm’s private information, the transitory demand
component �j . The equilibrium evolution of the state
vector is summarized by a vector field, where each
state is associated with the expected state in the next
period. Thus, for a given current state yt , we calculate
(and plot) a vector describing the expected movement
of the state between periods:

�8t = Ɛ�yt+1 � yt�− yt = Ɛ��f �yt� �� �yt� �� � yt�− yt�

Using the equilibrium policies and equilibrium state
transitions, we can simulate a path of prices, software
titles, sales, and installed base values given an initial
condition y0 and a sequence of demand shocks, �t .
For each set of parameter values, we generate 5,000
simulations of the evolution of the market. Using the
simulated values, we can then examine the distribu-
tion of prices over time and the distribution of shares
in the total installed base at the end of each period,
�jt , as defined in §2.

20 This discount factor corresponds to an annual interest rate of
12.8%.
21 Note that this normalization also requires rescaling the para-
meters in the equation describing the predicted flow of titles sold
such that the software supply is proportional to the market size M .
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7.2. Measuring Tipping: Symmetric Competition
We first analyze a case of symmetric competition,
where both competitors have identical demand func-
tions, production costs, and royalty fee structures. The
standards are also symmetric in their initial installed
base levels, y0 = �0�0�. In the symmetric case, it is easy
to compare the predicted market concentration rela-
tive to the benchmark case, where both competitors
share the market equally. We assume that both com-
petitors are characterized by the parameter estimates
that we obtained for Sony. We refer to these ex ante
identical competitors as standards 1 and 2.
We first examine how market outcomes are influ-

enced by the consumers’ marginal utility of soft-
ware, ". We use the parameter estimates obtained for
the consumer discount factor % = 0�9 and then scale
the estimated software utility coefficient by the factors
0.25, 0.5, 0.75, and 1. Figure 2 displays the resulting
equilibrium pricing policies and expected price paths
for each of the different software utility values. The
expected price paths are conditional on cases where
standard 1 sells at least as many consoles as standard 2
by the end of period T = 48, yT 1 ≥ yT 2. The marginal
production costs are indicated by horizontal lines. Fig-
ure 3 shows the vector field describing the expected
evolution of the state and the distribution of shares of
the installed base, �jt , T = 48 months after both stan-
dards were launched.22

For the scale factors 0.25, 0.5, and 0.75, the results
are similar. Prices rise over time as firms compete
more aggressively when they have not yet obtained
a substantial share of the market. After 48 months,
both firms have an approximately equal share of all
adopters. Hence, market outcomes are approximately
symmetric.
Now compare these results to the model solution

obtained for the estimated software utility coefficient
(scale factor equals one), indicating a larger indirect
network effect than in the previous three model vari-
ations. The equilibrium changes both quantitatively
and qualitatively. First, unlike in the previous cases,
we are no longer able to find a symmetric equilib-
rium in pure strategies. However, there are at least
two asymmetric pure strategy equilibria. The graphs
at the bottom of Figure 3 display one of these equi-
libria, which “favors” standard 1. In this equilibrium,
before any consoles have been sold (y0 = �0�0�), con-
sumers expect that standard 1 will obtain a larger
market share than standard 2 (note the direction of
the arrow at the origin). These expectations are self-
fulfilling, and because of the impact of the expected

22 The dark bar at the abscissa value � depicts the percentage of
all model simulations, i.e., approximately the probability that stan-
dard 1 accounts for a fraction � of all adopters at the end of T = 48.

future value of software on adoption decisions, stan-
dard 1 is expected to achieve a larger share of the
installed base than standard 2. However, if standard 2
ever obtains a share of the installed base that is suf-
ficiently larger than that of standard 1 (because of a
sequence of favorable demand shocks, for example),
then consumers’ expectations flip and standard 2 is
expected to win. The advantage due to self-fulfilling
expectations is increasing in the difference of shares
in the installed base, yjt − y−j� t .
As a consequence of this equilibrium behavior, the

market becomes concentrated even though the stan-
dards are identical ex ante. The expected cumulative
one-firm concentration ratio increases from C1 = 0�501,
for the scale factor 0.25, to C1 = 0�845, for the scale
factor 1 (see Table 3). The distribution of shares in
the installed base not only becomes disperse but also
asymmetric: in about 55% of all simulations, stan-
dard 1 “wins” the market, i.e., obtains a larger share
of the installed base than standard 2. Note that there is
also another asymmetric equilibrium that favors stan-
dard 2. This equilibrium exactly mirrors the one that
favors standard 1; for example, standard 2 has a 55%
chance of “winning” the market, etc.
Another interesting aspect of the equilibrium is the

impact of the magnitude of the marginal utility of
software on firms’ pricing strategies. As can be seen
at the bottom of Figure 2, for a scale factor of one,
pricing becomes substantially more aggressive than
under the smaller scale factors. For small values of
yjt , the firms engage in penetration pricing whereby
prices are set below the $147 marginal production cost
of a console.
Next, we examine how market outcomes change

under different values of the consumers’ discount fac-
tor %. The discount factor influences how consumers
value software that they expect to become available
in the future, and thus it determines the importance
of expectations in driving adoption decisions. We
choose several discount factors �%= 0�6, 0.7, 0.8, 0.9)
and solve the model for each %, holding the other
parameters that were estimated for the discount fac-
tor %= 0�9 constant. Figure 4 shows that the equilibria
obtained and the expected concentration of the mar-
ket are highly sensitive to the magnitude of %. For
the smaller discount factors (% < 0�9), corresponding
to relatively small indirect network effects, we obtain
a symmetric equilibrium where the expected one-firm
concentration ratio C1 is just slightly larger than 0.5
(Table 3). For %= 0�9, however, we are unable to com-
pute a symmetric equilibrium, and the expected mar-
ket concentration increases to C1 = 0�845, as already
discussed above.
Because the discount factor is typically not identi-

fied from field data, in practice it is assumed to have
a known fixed value when other model parameters
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Figure 2 Symmetric Competition: Equilibrium Pricing Policies and Price Paths
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T = 48. Marginal production costs are indicated by horizontal lines.
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Figure 3 Symmetric Competition: Expected State Evolution and Distribution of Shares in the Installed Base After 48 Months
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Figure 4 Symmetric Competition: Expected State Evolution and Distribution of Shares in the Installed Base After 48 Months for Different Consumer
Discount Factors ���
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Table 3 Predicted One-Firm Concentration Ratios

Model predictions: Symmetric case
(parameter estimates for Sony)

Scale factor for � 0.25 0.50 0.75 1.00

C1 0�501 0�503 0�508 0�845

Discount factor (�) 0�600 0�700 0�800 0�900

C1
a 0�501 0�502 0�508 0�845

C1
b 0�501 0�501 0�508 0�845

Model predictions: Estimated parameter values

Scale factor for � 0�250 0�500 0�750 1�000

C1 0�600 0�593 0�562 0�843

Discount factor (�) 0�600 0�700 0�800 0�900

C1
a 0�602 0�601 0�599 0�843

C1
b 0�571 0�572 0�562 0�843

Notes. The results are based on 5,000 simulations, and the concentration
ratios are reported for month T = 48. No standard has an initial advantage;
y0 = �0�0�.

aAll estimated model parameters were obtained for �= 0�9.
bPredictions where the model parameters were reestimated for each con-

sumer discount factor, �.

are estimated. To verify the sensitivity of our results
to the specific value of % assumed during the esti-
mation stage, we repeat the previous comparative
statics exercise by reestimating the model parame-
ters for each of the discount factors: %= 0�6, 0.7, 0.8,
0.9. Referring to Table 3, we see that the results are
very similar to those where we only varied % but not
the other model parameters. In particular, the market
outcomes are almost symmetric for the discount fac-
tors % < 0�9 and then become very concentrated for
%= 0�9.
Using our estimated demand parameters, we did

not see tipping or multiple equilibria arise for con-
sumer discount factors %≤ 0�8. In principle, multiple
equilibria and strong degrees of market concentration
can arise even if consumers are myopic. For exam-
ple, if we set the consumer’s discount factor to %= 0,
we find multiple equilibria if we scale the estimated
software coefficient by a factor of 11 or higher.

7.3. Measuring Tipping: The General Case
The symmetric case discussed in §7.2 establishes the
intuition for the model predictions. We now turn to
the measurement of tipping due to indirect network
effects in the general case where firms are asymmet-
ric ex ante (but we retain the initial condition y0 =
�0�0�). With heterogeneous competitors, markets can
obviously become concentrated even in the absence of
indirect network effects. Hence, we measure tipping
relative to a specific counterfactual outcome where
one or all mechanisms leading to indirect network
effects are absent or smaller in magnitude.

We first focus on the consumers’ software utility
parameter, ". As in the symmetric case studied above,
we scale this parameter by the factors 0.25, 0.5, 0.75,
and 1.23 Figure 5 shows the expected market evolu-
tion and distribution of shares in the installed base
for the different scale factors. Unlike in the case of
symmetric competition, one standard, Nintendo, has
a persistent advantage for all of the smaller scale fac-
tors (0.25, 0.5, and 0.75). In all 5,000 model simula-
tions, Nintendo obtains a larger installed base share
than Sony by the end of period T = 48, and the
expected one-firm concentration ratio C1 ranges from
0.562 to 0.6 (Table 3). At the estimated parameter val-
ues (scale factor = 1), however, we once again see a
big qualitative and quantitative change in the equi-
librium. First, the market becomes significantly more
concentrated; C1 = 0�843. Second, Sony is now pre-
dicted to obtain a larger installed base share than
Nintendo in 85% of all cases. That is, indirect net-
work effects strongly increase the concentration of the
market and, in addition, the identity of the larger
standard changes. The reason for this difference in
outcomes for different magnitudes of the indirect
network effect is that, according to our estimates,
Sony dominates Nintendo in terms of the quantity
of software titles supplied at any given value of the
installed base. On the other hand, Nintendo has a
lower console production cost ($122 versus $147). For
small values of the software utility, Nintendo’s cost
advantage results in lower equilibrium prices and
thus a market share advantage over Sony. Once the
software utility gives rise to sufficiently large net-
work effects, however, Sony’s advantage in the sup-
ply of games becomes important and helps it to win
the standards war against Nintendo. The same argu-
ment also explains why initially, for the scale fac-
tors 0.25, 0.50, and 0.75, the concentration ratio C1
slightly decreases: Sony obtains a larger market share
as its relative advantage as a result of indirect net-
work effects becoming more pronounced.
Figure 6 shows the (expected) pricing policies and

expected price paths for the different software scale
factors. As in the case of symmetric competition, the
two standards engage in penetration pricing for a
scale factor of 1. Pricing becomes substantially less
aggressive for the smaller scale factors, although for
a scale factor of 0.75, Nintendo still engages in a few
periods of below cost pricing to fight Sony’s software
advantage. We also see that Nintendo’s marginal cost
advantage translates into generally lower equilibrium
prices.
Next, we examine the market outcomes under dif-

ferent consumer discount factors (%= 0�6, 0.7, 0.8, 0.9).

23 The consumer discount factor is set to %= 0�9�
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Figure 5 Predictions from Estimated Parameter Values: Expected State Evolution and Distribution of Shares in the Installed Base After 48 Months
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Figure 6 Equilibrium Pricing Policies and Price Paths from Estimated Parameter Values
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Figure 7 Predictions from Estimated Parameter Values: Expected State Evolution and Distribution of Shares in the Installed Base After 48 Months
for Different Consumer Discount Factors ���
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Table 4 Predicted Degree of Tipping at Estimated Parameter Values
��= 0�9�

Scale factor for � 0�250 0�500 0�750

C1 0�243 0�249 0�280

Discount factor (�) 0�600 0�700 0�800

�C1
a 0�241 0�242 0�244

�C1
b 0�272 0�271 0�280

Notes. This table displays the increase in market concentration relative to a
specific counterfactual model, where either the marginal utility of software,
�, is scaled or a different consumer discount factor is chosen. The results
are based on 5,000 simulations, and the tipping measures are reported for
month T = 48. No standard has an initial advantage; y0 = �0�0�.

aAll estimated model parameters were obtained for �= 0�9.
bPredictions where the model parameters were reestimated for each con-

sumer discount factor, �.

We vary % but hold all other parameters constant at
their estimated values, which were obtained for a dis-
count factor of 0.9. The results (see Table 3 and Fig-
ure 7) show that the market concentration increases
from C1 ≈ 0�6 for % < 0�9 to C1 = 0�843 for % = 0�9�
Furthermore, as already discussed, although Sony has
a larger share of the installed base than Nintendo in
85% of all cases when %= 0�9, Nintendo is always pre-
dicted to win for the smaller discount factors. These
predictions remain quantitatively very similar when
we reestimate all parameters for each separate con-
sumer discount factor.
Finally, Table 4 shows our measure of tipping, �C1,

which is the change in concentration associated with
model predictions based on the estimated parame-
ter values relative to model predictions based on sev-
eral counterfactual sets of parameter values that either
lower the software utility parameter " or the con-
sumers’ discount factor %. For example, compared
to a market where the consumers’ flow utility from
software is only 25% of the estimated value, indirect
network effects are predicted to increase the market
concentration by 24.3 percentage points. Relative to
a market where consumers discount the future using
% = 0�6, the market concentration increases by 24.1
percentage points. If we look at the counterfactual
where all parameters are reestimated for the alterna-
tive discount factor %= 0�6, the increase in concentra-
tion is 27.2 percentage points. Hence, in our particular
example, we predict a large, quantitatively significant
degree of tipping as a result of indirect network effects.

7.4. Tipping in the Absence of Multiple
Equilibria: Initial Advantage and Market
Concentration

In the previous subsections, tipping was associated
with the emergence of multiple asymmetric equilib-
ria. In this section, we show that tipping is not per

se a result of the multiplicity of equilibria. In particu-
lar, we show how an initial advantage in the installed
base for one firm, possibly due to an earlier launch,
can also tip the market in its favor. This initial advan-
tage can create tipping even in the presence of a
symmetric, pure strategy equilibrium. Tipping is still
moderated by the indirect network effects in that an
initial advantage increases the relative utility that con-
sumers gain from adopting the incumbent standard
at the time the competitor enters the market, exac-
erbating its advantage. Although we do not model
the source of the initial advantage, it could reflect a
firm’s strategy of increased research and development
(R&D) spending, superior R&D capabilities, or simply
a particularly favorable random draw from the R&D
production function.
We consider the case where the standard labeled

“1” has gained an installed base of y10 at the time its
incumbent enters the market. We simulate the model
using the initial condition y0 = �y10�0�. As before,
we simulate the model 5,000 times and record the
expected market outcomes in month T = 48�
We could measure market concentration using the

expected cumulative one-firm concentration ratio, as
we did in the analysis in §§7.2 and 7.3. However, this
measure would also incorporate the initial installed
base advantage, which would be confounded with
the indirect network effect on market concentration.
We thus measure the degree of concentration based
on the cumulative one-firm concentration ratio in the
“remaining market”:

�C1��������≡ Ɛ
(
max��̃1T � �̃2T �

∣∣������)�
�̃1T =

y1� t+1− y10
�y1� t+1− y10�+ y2� t+1

�

�̃2T =
y2� t+1

�y1� t+1− y10�+ y2� t+1
�

If indirect network effects had no impact on adop-
tion choices and if both standards were symmetric,
we would expect �C1 ≈ 0�5.
For the case of symmetric competition, Figure 8 dis-

plays the effects of an initial installed base advan-
tage for standard 1 on �C1 and on the percentage of
simulations in which standard 1 wins, in the sense
that �̃1T > �̃2T . The results are displayed for different
discount factors, % (all parameters were reestimated
for each %). The market concentration is increasing in
the installed base advantage of standard 1. For exam-
ple, for an initial advantage of y10 = 0�1, which corre-
sponds to 10% of the total market, �C1 = 0�64 for %=
0�7 and �C1 = 0�78 for %= 0�8. Also, in all simulations,
standard 1 wins across all simulations for any initial
advantage y10 ≥ 0�025.
Figure 9 shows the corresponding results for the

general case with heterogeneous competitors. Here,
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Figure 8 Symmetric Competition with an Installed Base Advantage for Standard 1: Market Concentration in Remaining Market, Percent Times
Standard 1 Wins, and Percent Profit Increase for Standard 1
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Figure 9 Competition with an Installed Base Advantage for Sony: Market Concentration in Remaining Market, Percent Times Sony Wins, and
Percent Profit Increase for Sony
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we consider an advantage for Sony in terms of its
initial installed base. For the three discount factors
%= 0�6, 0.7, and 0.8, we find a nonmonotonic relation-
ship between the initial installed base share of Sony
and the resulting concentration ratio in the remain-
ing market. �C1 decreases for small values of the ini-
tial advantage and then increases for larger values
of the initial advantage. Across all simulations, Nin-
tendo always wins the standards war until Sony’s
initial advantage reaches a certain threshold, after
which Sony always wins. The reason for these find-
ings relates again to the different sources of competi-
tive advantage of Sony and Nintendo. Recall from §6
that for small values of the consumers’ discount fac-
tor (i.e., % < 0�9), the present value of software is suf-
ficiently low so that Nintendo “wins” because of its
cost advantage if y0 = �0�0�. However, if Sony gains
an initial advantage in the installed base, its platform
becomes more attractive to consumers. For small ini-
tial advantages, Sony captures some of Nintendo’s
market share and the market concentration decreases.
Once Sony’s advantage is sufficiently large, it captures
a large fraction of the market and the market concen-
tration increases.

7.5. Quantifying the Value of Tipping
We now quantify the value of tipping for a firm. As
we saw in §7.4, tipping can arise from an initial rela-
tive installed base advantage. To measure the value of
tipping, we vary the magnitude of the initial advan-
tage for a firm and examine how the initial advantage
impacts on profits.
Figures 8 and 9 show the percent increase in the

expected present discounted value of profits for a
given initial installed base advantage. The percent
increase is measured relative to the case of no initial
advantage and is shown for standard 1 (Figure 8) and
Sony (Figure 9). Present discounted profits are calcu-
lated over a time horizon of T = 48 months after the
entry of the competitor and do not include profits (or
losses) during the initial period when the incumbent
enjoyed a monopoly position.
Even for fairly small initial advantages, the profit

increase can be large. For example, in the symmetric
case, a five-percentage-point installed base advantage
translates into a profit increase of 16% for %= 0�7 and
47% for %= 0�8� In the general case, the correspond-
ing profit increase is 16% (%= 0�7) and 43% (%= 0�8).
For the general case, the predicted absolute increase in
profits is shown in Table 5. For example, for an initial
advantage of 10 percentage points, Sony’s predicted
profit increase over a four-year horizon is $547 million
for %= 0�7 and $1,317 million for %= 0�8. These pre-
dicted profit numbers are not directly comparable to
the actual realized profits of Sony in the U.S. market,
as we hold the marginal production cost constant in

Table 5 Profit Increase for Installed Base Advantage

Discount factor (�)
Installed base
adv. of Sony 0.6 0.7 0.8 0.9

0.025 70 134 370 808
0.050 139 271 732 1�142
0.075 207 410 1�052 1�271
0.100 274 547 1�317 1�381
0.125 339 680 1�529 1�470
0.150 403 807 1�711 1�541
0.175 464 922 1�857 1�589
0.200 523 1�030 1�985 1�617

Notes. This table shows the increase in the expected present discounted
value of Sony’s profits, measured in millions of dollars, for a given initial
installed base advantage. The results are based on 5,000 simulations, and
the present discounted value of profits is calculated for a time horizon of 48
months after the competitor (Nintendo) enters the market.

our simulations. Nonetheless, our results clearly indi-
cate how tipping, arising from an initial advantage,
can have a large impact on profits.

8. Conclusions
We provide a framework for studying the dynam-
ics of hardware/software markets. The framework
enables us to construct an empirically practical def-
inition of tipping: the level of concentration relative
to a counterfactual in which indirect network effects
are reduced or eliminated. Computational results
using this framework also provide several important
insights into tipping. Using the demand parameters
from the video game industry, we find that con-
sumer expectations play an important role for tip-
ping. In particular, tipping emerges as we strengthen
the indirect network either by increasing the utility
from software or by increasing the degree of con-
sumer patience. In some instances, this can lead to
an increase in market concentration by 24 percent-
age points or more. Interestingly, tipping is not a
necessary outcome even if indirect network effects
are present. For discount factors as high as 0.8, we
observe market concentration at roughly the level that
would emerge in the absence of any indirect network
effects, provided that no standard has gained an ini-
tial installed base advantage. However, if one stan-
dard has gained such an initial advantage, market
concentration arises as a result of positive feedback.
Studying other aspects of the equilibrium sheds

some interesting managerial insights into the pricing
and diffusion. In particular, strengthening the indirect
network effect toughens price competition early on
during the diffusion, leading firms to engage in pene-
tration pricing (pricing below marginal cost) to invest
in the growth of their networks. When tipping arises,
the market diffuses relatively quickly. Thus, an inter-
esting finding is that increasing consumer patience to
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the point of tipping leads to a more rapid diffusion of
consoles.
Our approach to measuring tipping and its role as

a source of market concentration should be of interest
to antitrust economists, academics, and practitioners.
For policy workers, our counterfactual approach pro-
vides an important method for assessing damages to
“bad acts” in markets with indirect network effects.
Our results relating consumer and firm beliefs and
patience to tipping should also be of interest to aca-
demics studying dynamic oligopoly outcomes in mar-
kets with durable goods, in particular with indirect
network effects. Finally, the modeling framework con-
stitutes a state-of-the-art quantitative paradigm for
practitioners to assess the long-run market share of
new durable goods, in particular those exhibiting net-
work effects. Suppose one could estimate demand
prior to a product’s launch, perhaps with a con-
joint experiment. Our supply-side methodology could
serve as a decision-support framework to predict
how the market would unfold. The framework could
assess the extent to which long-run profits and mar-
ket shares will arise from marketing (e.g., product
differentiation) versus natural market forces (e.g., net-
work effects). It would also help predict whether the
strength of differentiation and network effects are
such that tipping per se could potentially arise.
Our main goal herein is to study the role of con-

sumer beliefs and expectations for tipping, not to
explain the empirical diffusion of video game con-
soles per se. Therefore, even though we calibrate the
model with data from the 32/64-bit video game con-
sole market, we abstract from certain aspects of the
industry. For instance, we do not account for declin-
ing production costs and persistent consumer het-
erogeneity when we simulate the market outcomes.
We caution that our model predictions should not
be seen as an attempt to “explain” directly the his-
torical market outcome in the 32/64-bit video game
console industry. Nevertheless, studying learning-by-
doing on the supply side and consumer segmentation
on the demand side are two interesting directions for
future research in this area.
Another area for future research is the role of the

game content for console adoption. We intentionally
chose the 32/64-bit generation of consoles to allow us
to work with a simpler model of the game side of
the market. However, during subsequent generations,
blockbuster games have become crucial for console
adoption decisions. A very interesting direction for
future research would be to extend the framework we
provide herein to study the role of market power and
dynamics on the software side of the model.
More recent generations of game consoles have

become increasingly targeted (e.g., Nintendo Wii
appeals to families, whereas Xbox 360 appeals more

narrowly to adult males), which could increase the
incidence of households purchasing multiple con-
soles. According to Horwitz (2002), “nearly one in
10 current-system owners, and nearly one in five
legacy-system owners, has two or more consoles from
within their respective generations.” Here, “current-
system” refers to Xbox, Nintendo GameCube, and PS2,
whereas “legacy-system” refers to all previous gener-
ations including the one we use in the paper. Note
that these numbers also include ownership of hand-
held game devices, which we consider to be a sepa-
rate market from TV-based consoles. The numbers also
include households who owned a console from the
16/32-bit generation and then upgraded to a newer-
generation console. Therefore, we can think of 20% as
a very conservative upper bound for multihoming in
our data. Accounting for multihoming is the subject of
new research studying later video game console gen-
erations (Lee 2009).

9. Electronic Companion
An electronic companion to this paper is available
as part of the online version that cant be found at
http://mktsci.pubs.informs.org.
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Appendix A. Equilibrium Provision of Software
In this appendix, we illustrate how we can derive the hard-
ware demand model based on tastes for variety of soft-
ware. We use a CES model of preferences for software and
assume a spot market of monopolistically competitive soft-
ware suppliers.
After purchasing a hardware platform j , a consumer i

purchases an assortment of compatible software each
period, xit = �xi1t� � � � � xinj t�

′, by maximizing her software
utility subject to the budget constraint:

max
�x1�����xnjt �

U SW
ij

(
xi1� � � � � xinj t� zi�
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s.t.
njt∑
k=1

�kxik + zi = Ii − pjtQijt�

where pjt is the price of hardware standard j in period t and
Qijt indicates whether the consumer also purchases hard-
ware that period (it is zero if they adopted hardware at
some time period prior to t). The term zi is a numéraire
capturing expenditures on other goods, and �k is the price
of software k. We use CES preferences to model the con-
sumer’s utility for software:

U SW
ij

(
xi1� � � � � xinj t� zi

)

=
( njt∑
k=1

x1/bik

)1/a
+)zi� a≥ 1� b > 1�

The corresponding individual demand for software k is

x∗kt = �ab)�ab/�1−ab��b/�1−b�k

( njt∑
l=1

�
1/�1−b�
l

)�ab−b�/�1−ab�
�

Turning to the software supply side, we assume that con-
sumers derive utility from software for only one period.
Hence, a software firm earns profits on a software product
for only one period. Let yjt+1 represent the installed base of
consumers that have adopted hardware standard j prior to
period �t + 1�. This installed base represents the potential
demand at time t for a manufacturer of software compati-
ble with hardware standard j . Each software title is treated
as a separate firm. The profit function for a software firm k
active in period t producing a software title compatible with
hardware j is

/kt = ��k − c�yjt+1x
∗
kt − F �

where F is the fixed development cost and c is the marginal
cost. The marginal costs consist of both royalties to the man-
ufacturer and physical production costs (e.g., CDs and car-
tridges for Sony and Nintendo, respectively). Because soft-
ware firms are assumed to be ex ante identical, there exists a
symmetric price equilibrium in which each firm sets prices
as follows:

�= )c�

This symmetry also allows us to simplify the demand
function:

x∗kt = �ab)��ab/�1−ab�n�ab−b�/�1−ab�jtt
�

Under free entry, the equilibrium number of software firms
njt can be characterized by the installed base as follows:

log�njt�= D+7 log�yjt+1�� (A1)

where

D = ab− 1
ab− b

log��− c�

F �ab)��ab/�ab−1�

= ab− 1
ab− b

log�c�)− 1��
F �ab)2c�ab/�ab−1�

and 7= ab− 1
ab− b

�

We now derive the aggregate sales of software for each
standard. Total software sales will be important in deter-
mining the software royalties that accrue to each hardware

firm. We can substitute (A1) to express individual demand
for software k as follows:

x∗kt = �ab)��ab/�1−ab�n�ab−b�/�1−ab�jt

= �ab)2c�ab/�1−ab�
(
exp�D�y7jt+1

)−1/7

= �ab)2c�ab/�1−ab�
(
exp

(
−D

7

))
y−1jt+1�

We then obtain the corresponding aggregate demand for
software k:

X∗
kt = x∗ktyjt+1

= �ab)2c�ab/�1−ab� exp
(
−D

7

)
�

Finally, we obtain total software sales for the standard j :

Qjt =
njt∑
k=1

X∗
kt

= njt

[
�ab)2c�ab/�1−ab� exp

(
−D

7

)]

= [
exp�D�y7jt+1

][
�ab)2c�ab/�1−ab� exp

(
−D

7

)]

= exp
(
D�1−7�

7

)
�ab)2c�ab/�1−ab�y7jt+1�

We can therefore estimate the elasticity of total software
sales with respect to the installed base as follows:

log�Qjt�=�+7 log�yjt+1��

Appendix B. A Two-Step Estimator for the Demand
Parameters

Stage 1. In the first stage, we estimate the consumer
choice strategies along with the firms’ pricing strategies and
the software supply function. The supply function of soft-
ware variety is specified as follows:

log�njt�=�j �yj�t+1EFn�+Gjt� (A2)

where Gjt ∼ N�0� 2G� captures random measurement error.
The pricing strategies are specified as follows:

log�pjt�=�j �yt� z
p
t E Fp�+7�jt� (A3)

where �jt ∼ N�0�1�. In Equation (A3) we let �j be a flex-
ible functional form of the state variables. For the empiri-
cal model, we include exogenous state variables zpt that are
observed by console firms in addition to yt and �t� the state
variables in the model of §3. These additional states are dis-
cussed in §4. In Equation (A3), we assume that the video
game console manufacturers use only payoff-relevant infor-
mation to set their prices. However, we do not assume that
their pricing strategies are necessarily optimal. This spec-
ification has the advantage that it is consistent with the
Bayesian Markov perfect equilibrium concept used in our
model but does not explicitly impose it.
Conditional on the model parameters, there is a deter-

ministic relationship between the price and installed base
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Table B.1 Model Fit for Different Specifications

Model Log-likelihood BIC

1. Linear, 
, 1-comp −187�88 679�40
2. Linear, time �t < 60�, 1-comp −150�11 620�97
3. Quadratic, time �t < 60�, 1-comp −79�38 514�01
4. Quadratic, time �t < 60�, 2-comp −79�38 522�28
5. Quadratic, time �t < 60�, 1-comp, −63�54 507�69

PPIs in prices
6. Quadratic, time �t < 60�, 1-comp, −25�43 422�94

exchange rate in prices
7. Quadratic, time �t < 60�, 1-comp, −7�53 412�79

exchange rate and PPIs in prices

Table B.2 First-Stage Estimates: Pricing Policies �j

Sony Nintendo

Estimate Std. err. Estimate Std. err.

Intercept 2�653 1�523 −1�592 4�051
ySony −3�266 1�785 −0�861 2�490
yN64 1�889 1�499 0�666 0�813
y 2
Sony −0�320 0�218 −0�142 0�282
y 2
N64 0�186 0�130 0�077 0�070
Time �<64� 0�005 0�003 0�000 0�002
January 0�102 0�040 −0�054 0�016
February 0�132 0�119 0�005 0�104
March 0�118 0�053 −0�082 0�214
April 0�136 0�057 −0�046 0�046
May 0�045 0�032 −0�055 0�037
June −0�012 0�003 −0�011 0�028
July 0�000 0�026 −0�052 0�037
August −0�001 0�012 −0�032 0�021
September −0�049 0�074 −0�088 0�021
October 0�011 0�048 −0�015 0�039
November −0�026 0�019 −0�002 0�025
PPI 1 −0�432 0�070 −0�285 0�154
PPI 2 −0�546 0�351 −0�608 0�816
PPI 3 −0�471 0�769 0�227 0�807
Exchange rate (3-month lag) 0�434 0�509 0�397 0�159
Exchange rate (7-month lag) −4�493 1�118 1�390 8�096
log��� −4�511 0�123 −4�511 0�123

data and the demand unobservable, �jt = �j �yjt� pjt� z
p
t �.

24

Then, conditional on yt and pt� we can estimate the con-
sumers’ optimal choice strategy in log-odds:

Hjt ≡ log�sjt�− log�s0t�
= vj

(
yt� �t� pt� z

d
t

)− v0
(
yt� �t� z

d
t

)+ 8jt

= �j

(
yt���yt� pt� z

p
t �� z

d
t E FH

)+ 8jt� (A4)

where 8jt ∼ N�0� 28 � is random measurement error and zdt
denotes exogenous state variables observed by the con-
sumer. By including the control function ��yt� pt� z

p
t � in the

24 We can trivially invert � out of the price equation because of the
additivity assumption in (A3). This is a stronger condition than in
Bajari et al. (2007), but it is analogous to other previous work such
as Petrin and Train (2010).

Table B.3 First-Stage Estimates: Log-Odds of Market Shares �j

Sony Nintendo

Estimate Std. err. Estimate Std. err.

Intercept −13�826 2�539 −1�141 0�744
ySony 1�456 4�669 0�065 0�012
yN64 −7�670 5�884 −1�740 0�196
y 2
Sony −0�334 0�432 −1�304 0�305
y 2
N64 −0�684 0�571 −1�820 0�335
Time �<64� −0�003 0�008 −2�176 0�469
January −1�367 0�154 −1�950 0�528
February −1�345 0�159 −1�625 0�495
March −1�813 0�475 −1�682 0�525
April −2�442 0�351 −1�674 0�397
May −2�596 0�463 −1�268 0�402
June −1�947 0�395 −1�713 0�215
July −1�805 0�470 −0�789 0�335
August −1�871 0�392 −0�288 0�070
September −1�496 0�426 0�085 0�135
October −1�644 0�199 −0�406 0�150
November −0�781 0�120 0�084 0�173

Sony −27�656 5�216 0�103 0�061


N64 0�844 4�936 −0�220 0�083


2Sony −13�383 7�554 0�547 0�107


2N64 −0�660 0�416 −0�545 0�119

Table B.4 First-Stage Estimates: Equilibrium Game
Provision �j

Estimate Std. err.

Sony intercept −16�220 2�042
Nintendo intercept −24�349 1�992
ySony 1�369 0�126
yNintendo 1�810 0�126

demand equation, we also resolve any potential endogene-
ity bias that would arise as a result of the correlation
between prices and demand shocks (this is the control
function approach used in Petrin and Train 2006, 2010).
We assume that a firm’s price correlates only with its
own demand shock, which is consistent with our model-
ing assumption that the current demand shock is private
information to the firm. The static logit demand estima-
tion literature typically allows for a more general covariance
structure between prices and demand shocks. We view our
covariance restriction as a reasonable trade-off for the the
ability to model forward-looking consumer behavior. The
first stage consists then of estimating the vector of param-
eters � = �Fn� Fp� FH�7� via maximum likelihood using the
Equations (A2)–(A4).

Stage 2. In the second stage, we estimate the consumers’
structural taste parameters, 4, by constructing a minimum
distance procedure that matches the simulated optimal
choice rule for the consumers to the observed choices in
the data. The idea is to use the estimated consumer choice
strategies (A4) and the laws of motion for prices and
software variety (A3) and (A2) to forward-simulate the con-
sumers’ choice-specific value functions �j �yt� �t� ptE4� �̂�
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Figure B.1 In-Sample Fit: Prices
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Figure B.2 In-Sample Fit: Log-Odds Ratios
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Figure B.3 In-Sample Fit: Provision of Games
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and �0�y��E4� �̂�. The details for the forward simula-
tion are provided in the following subsection. Note that
although our two-step approach does not require us to
assume that firms play the Markov perfect equilibrium
strategies explicitly, we do need to assume that consumers
maximize the net present value of their utilities.
The minimum distance procedure forces the following

moment condition to hold approximately:

Qjt�40��̂� ≡ Hjt−
(
�j �y���pE40��̂�−�0�y��E40��̂�

)
= 0�

That is, at the true parameter values 40 and given a con-
sistent estimate of �� the simulated log-odds ratios should
be approximately equal to the observed log-odds ratios for
each of the observed states in the data. The minimum dis-
tance estimator 4MD is obtained by solving the following
minimization problem:

4MD =min
4

{
Q�4� �̂�′WQ�4��̂�

}
�

where W is a positive semidefinite weight matrix.25

Wooldridge (2002) shows that the minimum distance esti-
mator has an asymptotically normal distribution with the
covariance matrix

25 We just set W equal to the identity matrix because it is unclear
how to derive the efficient W in closed form for our specific
problem.

Avar�4MD�

= (
J4Q

′WJ4Q
)−1

·J4Q′WJ�QK̂J�Q
′WJ4Q

(
J4Q

′WJ4Q
)−1

�

where K̂ = Avar��̂�� and J4Q and J�Q denote gradients
of Q with respect to 4 and �, respectively.
The approach is closest to Pesendorfer and Schmidt-

Dengler (2006, hereafter referred to as PS-D). However, our
implementation differs in two ways. First, we examine a
model with continuous states; PS-D look at a model with
discrete states. Second, we adapt the approach to estima-
tion of aggregate dynamic discrete choice demand, whereas
PS-D focus on discrete choice at the individual level.

Forward Simulation of the Consumers’ Choice-Specific
Value Functions
We outline the procedure for using the first-stage esti-
mates of the consumers’ choice strategy (A4), the console
firms’ pricing strategies (A3), and the software supply (A2)
to forward-simulate the consumers’ choice-specific value
functions.
Conditional on the first-stage estimates and some initial

state y0, we can simulate histories of all variables affecting
the consumers’ payoffs. For any period t with beginning-
of-period installed base yt , we draw recursively as follows:

�jt ∼N�0�1�� �j = 1� � � � � J �
pjt � yt� �t = exp

(
�j �ytE F̂p�+ 7̂�jt

)
�
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Hjt � yt� �t =�j �yt� �tE F̂H��

sjt �Ht =
exp�Hjt�

1+∑J
k=1 exp�Hkt�

�

yj�t+1 � yt� st = fj �yt� �t�= yjt +
(
1−

J∑
k=1

ykt

)
sjt�

njt � yj�t+1 = exp
(
�j �yj�t+1E F̂n�

)
�

In this manner, we can draw a sequence of states, �yt� �t�Tt=0�
and corresponding prices, number of software titles, and
market shares.

Choice-specific value functions. We first compute the soft-
ware value functions. We assume the current software util-
ity is given by

uj�yj�t+1�= " exp��j �yj�t+1E F̂n��= "njt�

For any initial installed base y0� we draw a sequence of
states �y�r�t � �

�r�
t �Tt=0 and a sequence of corresponding soft-

ware titles �n�r�t �
T
t=0� Repeating this process R times, we cal-

culate the simulated expected present discounted value of
software at state y = y

�r�
0 :

	j �yE4� �̂�=
1
R

R∑
r=1

( T∑
t=0

%t"n
�r�
jt

)
�

The consumers’ choice-specific value functions from adopt-
ing standard j can then be calculated as

�j �y� ��pE4� �̂�= (j +	j �f �y���E4� �̂�−)pj +5�j �

Here, 4= �(�)�"�5� is a vector containing all the stage 2
preference parameters to be estimated. Note that T needs
to be chosen large enough such that %T is sufficiently small.

Value of waiting. First, we define the expected per-period
utility of a consumer who has not adopted at the beginning
of period t� conditional on yt� pt� and �t :


�yt� �t� = s0tƐ�*0t � 0�

+
J∑
j=1

sjt
(
(j +"njt −)pjt + �jt + Ɛ�*jt � j�

)
�

In this equation, st� pt� and nt are the choice probabilities,
prices, and number of software titles as implied by the first-
stage estimates, conditional on the current states yt and �t .
Furthermore, Ɛ�*jt � j� = − log�sjt� is the expected value of
the type I extreme value random utility component, given
that choice j is optimal.
Next, we define m0t as the probability that a consumer

has not adopted one of the hardware standards prior to
period t� Note that m01 = 1� because we want to calculate
the value of waiting in period t = 0� Thereafter (t > 1), m0t
evolves according to

m0t = s0� t−1m0� t−1�

mjt denotes the probability that a consumer has adopted
standard j prior to period t� mj1 = 0� and for t > 1�

mjt =mj� t−1+ sj�t−1m0� t−1�

We now draw some sequence of states, �y�r�t � �
�r�
t �Tt=0, with

initial conditions �y���= �y
�r�
0 � �

�r�
0 �� Given a corresponding

sequence of m�r�
0t and m

�r�
jt � define

� �r� =
T∑
t=1

%t
(
m
�r�
0t 
�y

�r�
t � �

�r�
t �+

J∑
j=1

m
�r�
jt �"n

�r�
jt �

)
�

� �r� is the expected present discounted value from wait-
ing, given that the market evolves according to �y�r�t � �

�r�
t �Tt=0.

Averaging over R draws, we obtain the expected value from
waiting, conditional on �y���= �y

�r�
0 � �

�r�
0 �:

�0�y��E4� �̂�=
1
R

R∑
r=1

� �r��

Appendix C. Computational Details
To solve the model, we need to find choice-specific value
functions, v0�v1� � � � vJ � that satisfy the consumer optimality
conditions (5) and (6). These choice-specific value functions
depend on the consumers’ expectations about the evolution
of the state vector f e�y��� and the firms’ pricing policies
 e
j �y� �j ��We also need to find value functions for the firms,

V1� � � � �VJ � that satisfy the Bellman equations (9) and cor-
responding pricing strategies,  j�y��j �� j = 1� � � � � J � These
pricing strategies depend on the firms’ expectations about
the consumers’ adoption decisions, which are characterized
by the choice-specific value functions, v0� � � � vJ � and on the
firms’ expectations of the pricing strategies of their com-
petitors. In a Markov perfect Bayesian equilibrium, the deci-
sions of the consumers and firms need to be optimal, and
the expectations need to be mutually consistent.
To solve for an equilibrium, we adapt a policy iteration

algorithm to the case of multiple decision makers (see Judd
1998 for a discussion of policy iteration and the survey
by Doraszelski and Pakes 2007 for a discussion of numeri-
cal solution techniques for games). We start with some ini-
tial guess of the choice-specific value functions v�k�0 � � � � v

�k�
J �

expectations about the state evolution f �k��y� ��� and price
expectations  �k�

j �y� �j ��

Step 1. Given f �k��y� ��� calculate the corresponding
present discounted value of software for each standard j�

#
�k�
j �y�� by iterating on the contraction mapping defined by
Equation (4).

Step 2. Calculate the choice-specific value functions
v
�k+1�
1 � � � � v

�k+1�
J using Equation (5) and calculate the value

of waiting v
�k+1�
0 from the right-hand side of the Bellman

equation (6).
Step 3. Find new pricing policies,  �k+1�

j � by maximiz-
ing the right-hand side of the firms’ Bellman equations (9).
Here, we use the state transitions implied by Equation (8),
which are based on the updated consumer value functions
v
�k+1�
0 � � � � v

�k+1�
J �

Step 4. Check if convergence has occurred:

�v�k+1�j − v
�k�
j �< *v and � �k+1�

j − 
�k�
j �< * �

If so, stop. Otherwise, proceed to the next step.
Step 5. Calculate new consumer expectations,

f �k+1��y� ��� by substituting p =  �k+1��y� �� into the state
transition Equation (8). Then return to 1.
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Figure C.1 Illustration of the Model Solution Algorithm

We discretize the installed base part of the state space
using a uniformly spaced grid, � = �y�i�� 1≤ i≤N��

where y
�i�
j ≥ 0 and

∑J
j=1 y

�i�
j ≤ 1� All integrals describing

the consumers’ and firms’ Bellman equations are numeri-
cally evaluated using Gauss-Hermite quadrature (see Judd
1998 for a discussion of numerical integration). Gauss-
Hermite quadrature is based on a weighted average of the
integrand evaluated at the quadrature nodes ��1�� � � � � ��K��
Correspondingly, we discretize the part of the state space
corresponding to the demand shocks � using the set of
quadrature nodes, � = ���1�� � � � � ��K��. Outside the grid, the
value functions and pricing policies are evaluated using
interpolation in the y dimension. However, when we eval-
uate the integrals in the Bellman equations (6) and (9), we
do not need to interpolate in the � dimension, because we
directly represent the value functions and pricing policies on
the quadrature nodes on which they need to be evaluated.
For some parameter values in the case of symmetric com-

petition, as discussed in §7, there are asymmetric multiple
equilibria. To calculate these equilibria, we first solve a
slightly changed, asymmetric version of the game. In par-
ticular, we set the demand intercept for standard 2 to (2−�
for some value � > 0 and solve the corresponding game.
We then use the equilibrium value functions and pricing
policies of the asymmetric game as starting values for the
symmetric game, which is solved using the original demand
intercept (2�
Unfortunately, unlike in the standard single-agent case,

policy iteration algorithms do not necessarily converge in
the case of games. Correspondingly, when updating the
value functions, we often found oscillations. In these cases,
we used a dampening scheme,

 �k+1��y� �� ← �1−7� �k+1��y� ��+7 �k��y� ���

to achieve convergence, where 7 was set very close to one.
This problem was particularly pronounced in the pres-
ence of multiple equilibria. Future work using similar mod-
els may benefit from the use of homotopy methods (see
Doraszelski and Pakes 2007). Given current software avail-
ability and computing speed, however, we do not believe
that homotopy methods are yet practical for a model as
complex as the one in our paper.

The evolution of the state vector in our model allows for
a particular time-saving approach to solving for the equi-
librium. Note that yt ≤ yt+1� Hence, for example, starting
at state ya in Figure C.1, the value functions and pricing
policies will only depend on the future value functions and
pricing policies in the darkly shaded area of the state space.
We can thus solve the game backwards. First, we move
along the grid points on the diagonal boundary �y1+y2 = 1�
of the state space, corresponding to points y�1�� � � � � y�11� in
Figure C.1. Then, we move to the second diagonal of grid
points and solve the game for points y�12�� � � � � y�21�� etc.
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