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There is substantial literature documenting the presence of state-dependent utility with packaged goods data.
Typically, a form of brand loyalty is detected whereby there is a higher probability of purchasing the same

brand as has been purchased in the recent past. The economic significance of the measured loyalty remains an
open question. We consider the category pricing problem and demonstrate that the presence of loyalty materially
affects optimal pricing. The prices of higher quality products decline relative to those of lower quality when
loyalty is introduced into the model. Given the well-known problems with the confounding of state dependence
and consumer heterogeneity, loyalty must be measured in a model which allows for an unknown and possibly
highly nonnormal distribution of heterogeneity. We implement a highly flexible model of heterogeneity using
multivariate mixtures of normals in a hierarchical choice model. We use an Euler equations approach to the
solution of the dynamic pricing problem which allows us to consider a very large number of consumer types.
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Introduction
A large literature in marketing documents the pres-
ence of a particular form of state-dependent utility in
choice among packaged goods items. The typical find-
ing is that the utility of a brand is enhanced1 if this
brand was recently purchased, c.f. Erdem (1996), Roy
et al. (1996), Seetharaman et al. (1999), Seetharaman
(2004), and Horsky et al. (2006). Accordingly, con-
sumers appear to exhibit loyalty to the previous brand
purchased. While a great deal of work has been
devoted to investigating various utility specifications
and distributions of heterogeneity, comparatively lit-
tle attention has focused on the implications of state
dependence for substantive marketing decisions such
as pricing.

We consider the implications of loyalty to the last
brand purchased for the pricing problem facing a
retailer managing a typical product category consist-
ing of substitutable packaged good items. That is,
we use the pricing problem and category profits as
a metric for assessing the economic significance of
the detected level of loyalty. We do not test whether
loyalty influences observed prices per se. Rather,
we compute the profit-maximizing prices that would
arise from demand estimates calibrated from con-
sumer panel data. Loyalty introduces a nontrivial
source of dynamics into the category pricing prob-
lem. Current pricing decisions affect current prod-
uct choices and, subsequently, the number of loyal

1 This form of state dependence is typically termed “brand loyalty.”

customers for each product in the following period.
Thus, current prices influence future product demand.
For the static category pricing problem, prices are typ-
ically high for products with relatively high perceived
qualities and, hence, high consumer willingness to
pay. The solution to the dynamic pricing problem
requires the category manager to control the flow of
customers to those products where the future returns
to loyalty are highest. If the returns to loyalty are
highest for relatively high quality products, then state
dependence can introduce a counteracting downward
pressure on the prices of higher quality goods.

We formulate the dynamic pricing problem facing
the retailer as a dynamic program in which the retailer
chooses a Markovian price policy function, which pro-
vides the optimal price at time t as a function of the
state of the system at time t. Aggregate demand at
time t is the sum of the demands over various con-
sumer types and states of loyalty to various brands.
The “state” of the system is a vector of the propor-
tions of consumers of each type and each loyalty state.
For any realistic problem, this is a very high dimen-
sional state vector which renders many of the standard
value function approximation methods (c.f. Judd 1998,
Chapter 12) impractical. To solve the problem numeri-
cally, we exploit the fact that there is a stationary long-
run pricing policy and we solve for the optimal prices
using the Euler equations which this stationary pricing
policy must satisfy. This insight enables us to use Euler
equations to solve a dynamic programming problem
with a high dimensional state space.
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The infinite horizon pricing problem is appropriate
for situations in which firms expect to remain in
business for more than a few periods. In finite hori-
zon problems, as the terminal period approaches, the
incentives for the firm to invest in loyal customers
decrease and make the pricing solutions nonstation-
ary. This means that these models, taken literally,
would predict price trends of the sort which we typi-
cally do not see in retailer price data. In the theoretical
literature on brand loyalty (c.f. Villas-Boas 2004), it
is common to consider a two-period problem. While
this can be a useful simplification to illustrate some
of the economic forces at work in these problems,
it is not appropriate for application to retail pricing
problems. The only empirical work on dynamic pric-
ing with brand loyalty (Che et al. 2005) considers
only finite horizon problems as well. Our method-
ological contribution consists of an approach for solv-
ing single-agent infinite horizon problems which, thus
far, proved too difficult to solve for realistic empirical
models of demand.

While our approach correctly solves the single-agent
dynamic pricing problem, it does not extend to com-
petitive environments like the one considered by Che
et al. (2005). Accommodating competition increases
the computational complexity considerably and, in
most instances, renders the solution intractable.
Rather than solve the competitive dynamic pricing
problem, Che et al. (2005) approximate the solution by
imposing a simplification of the state space to reduce
the dimensionality of their problem.2 However, it is
unknown whether this approach can approximate the
solution to the true dynamic pricing problem satisfac-
torily. In addition, Che et al. (2005) consider a finite
horizon problem which does not allow for the com-
putation of long-run or stationary pricing policies.

In order to claim that our optimal pricing results
have relevance for marketing practice, we require a
realistic utility specification as well as a flexible distri-
bution of consumer heterogeneity. Fortunately, we can
draw on the large literature for advice on the specifi-
cation of the utility model, as authors have tried and
tested a wide variety of specifications. In the speci-
fication of the distribution of heterogeneity, the cur-
rent state of the art (c.f. Keane 1997 and Seetharaman
et al. 1999) is a normal distribution (an exception is
Allenby et al. 1998). The degree of measured loyalty
has been noted to be highly sensitive to the man-
ner in which heterogeneity is modeled. Since there
is little theoretical or empirical guidance as to the

2 The approximation uses aggregate market shares as a proxy for
the state vector. The correct state vector contains the fraction of
consumers of each type loyal to each brand. This reduces the size of
the state vector from N × J to J (if there are N types of consumers
and J brands) but has unknown approximation properties.

nature of the distribution of heterogeneity, we adopt
a semiparametric approach in which the distribution
of utility coefficients is approximated by a mixture of
multivariate normals.

We fit our demand model to scanner data from
the margarine and refrigerated orange juice cate-
gories. Computation of optimal prices taking into
account brand loyalty reveals considerable differ-
ences between forward and non-forward-looking firm
behavior. For our estimated demand values, account-
ing for loyalty results in higher firm profits. More
generally, if the firm maximizes profits over the infi-
nite horizon, the prices of different quality goods will
change relative to the one-period optimal prices. In
particular, the price gap between brands of low and
high perceived quality will be reduced. This is driven
by the fact that the marginal profitability of a cus-
tomer loyal to the high quality good is higher than
for a low quality good. Hence, a forward-looking firm
uses prices to control the number of loyals to the
higher quality good.

Model
Demand
We consider a market where households exhibit state
dependence in product choice. Product demand is
derived by aggregating over individual household
decisions. Households choose among J products and
an outside option. The utility index from product j at
time period t is:

ujt = �j +�pjt +	I�st = j+ �jt� (1)

where pjt is the product price and �jt is the standard
iid error term used in most choice models. In the
model given by Equation (1), the brand intercepts rep-
resent vertical product differentiation. The error terms
ensure that there will be a degree of “horizontal” dif-
ferentiation between products in the sense that the
aggregate market share will be positive for all prod-
ucts. st ∈ �1� � � � � J  summarizes the history of past
purchases from the perspective of impact on current
utility. We take the standard approach, often termed
the “state-dependent” model of demand, and assume
that the history can be characterized by an indication
of which brand was purchased on the last purchase
occasion (e.g., Erdem 1996 and Seetharaman et al.
1999). If 	 > 0, it can be interpreted as a household’s
“loyalty” to the specific brand. If a household buys
product k in period t, then st+1 = k, i.e., the household
becomes loyal to that brand. If the household chooses
the outside option, then st+1 = st , i.e., the household’s
brand loyalty remains unchanged.

All demand parameters � = ��1� � � � ��J ���	� can
be household specific. There are N household types in
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the market. The behavior of each household type n is
fully characterized by the taste vector �n. We assume
that for each household type, there is a continuum of
consumers with mass 1 in the market. This assump-
tion is for convenience because it makes the demand
system and the transition of the entire state vector
deterministic from the perspective of the firm.

The market is summarized by a state vector xt
which is comprised of subvectors of dimension J for
each of the N consumer types: xt = �x1t � � � � � xNt � and
xnt = �xn1t� � � � � xnJt�. xnjt is the fraction of consumers of
type n who are loyal to product j at time t. Since
consumers must be loyal to one of the products,∑
j x
n
jt = 1. Let Prnj �s

n
t � pt� = Prj �snt � pt � �n� denote the

choice probability for product j given the state and
the vector of prices pt . Demand for product j and
household type n is given by:

Dnj =
J∑
k=1

xnkt Pr
n
j �s

n
t = k�pt��

Aggregate demand for product j is given by summing
over types using the distribution of households over
types and loyalty states:

Dj�xt� pt�=
N∑
n=1

Dnj =
N∑
n=1

J∑
k=1

xnkt Pr
n
j �k� pt�� (2)

Evolution of the State Vector
If households exhibit brand loyalty, the pricing
problem becomes more complicated because current
period pricing decisions influence the loyalty state
and thus affect the future state of the market. In par-
ticular, the model given by Equation (1) implies that
the states evolve according to a Markov chain. The
last period’s purchase defines the loyalty state from
this point on, giving rise to the Markovian prop-
erty. The transition matrix of the Markov chain is
populated by the conditional choice probabilities. For
example, if a household is currently loyal to prod-
uct k, then the household will remain in state k next
period if it purchases product k. Thus, the conditional
choice probabilities are the state transition probabili-
ties. We must remember, however, that if the house-
hold purchases the outside good, then its loyalty state
remains unchanged. Consequently, we must add the
conditional probability of choosing the outside good
to the diagonal elements of the transition matrix. Let
Q denote the transition matrix where element qk� j
represents the probability of transitioning from state
j to state k:

Qnk� j �pt�=


Prnk�j� pt�+Prn0�j� pt� if k= j
Prnk�j� pt� if k �= j�

(3)

The transition matrix is a function of the current price
vector and is indexed by household type. The state

vector for household types evolves according to the
standard Markov chain equation:

xnt+1 =Qn�pt�xnt � (4)

Since standard choice models deliver strictly positive
choice probabilities, the elements of Q are positive,
guaranteeing that the chain given by Equation (4) has
a unique stationary distribution for a fixed price vec-
tor. For ease of reference to the Markov decision prob-
lem literature, we can also write Equation (4) as:

xt+1 = f �xt� pt�� (5)

Dynamic Category Pricing
The pricing problem is posed as an infinite horizon
problem in which the retailer maximizes the dis-
counted flow of profits subject to the constraint im-
posed by the state evolution equation:

V �x0�=max
�pt 

�∑
t=0

�t��pt� xt�

s.t. xt+1 = f �xt� pt� t = 0� � � � ��� (6)

��pt� xt� is the current period profit given by:

��pt� xt�=
J∑
j=1

�pjt − cj �Dj�xt� pt�� (7)

� is the discount factor �<1� and cj is the marginal
cost of product j (assumed constant over time for
simplicity).

We are solving the infinite horizon version of the
retailer’s problem in Equation (6). Some might argue
that it is more realistic to solve a finite period prob-
lem as most retailers are not literally infinitely lived.
There are two problems with this approach. First, if
we pick a finite number of periods, we must pick
a very large number of periods to approximate any
real retail application since most retailers expect to
stay in business for many years. There is no simple
way to solve, for example, a 40-period problem except
via a “brute force” nonlinear programming approach
which would require optimizing a constrained non-
linear program of very high dimension. Second is
the problem of terminal effects. It is well-known the
optimal solution reflects the approach of “cap T”
in a finite horizon model. In our case, this would
distort the incentives to control the brands to which
customers are loyal. The infinite horizon problem
provides a good approximation to the behavior of
retailers in a stationary environment where there are
no approaching terminal conditions.

To solve Equation (6), we must pick an optimal infi-
nite sequence of price vectors or, equivalently, find a
value function V that solves the Bellman equation:

V �x�=max
p
���p�x�+�V �f �x�p��� (8)
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Given a solution to the Bellman equation, we can find
the policy function which yields optimal prices as a
function of the state vector pt = !�xt�. The optimal
prices maximize the right-hand side of the Bellman
equation.

To solve the functional Equation (8), the standard
approach involves approximating the value function
V via some interpolation method and using a value
or policy function algorithm (Judd 1998). We are solv-
ing for a policy function which maps the N × J
dimensional state space into a J dimensional vector
of prices. For even a small number of products and
types, this problem quickly becomes computationally
intractable. We wish to apply these methods to situa-
tions in which there are potentially hundreds of types
of consumers and five or more products. For this rea-
son, we must exploit the special structure of our prob-
lem in order to render the computation of optimal
prices feasible.

Steady State Prices via Euler Equations
We focus on computing a steady state with constant
prices and a reproducing state vector. As we show
below, a steady state pricing policy exists for our
problem. Even though the steady state pricing pol-
icy does not theoretically guarantee a constant level
of steady state prices, we can nevertheless establish
existence of the latter by construction, i.e., we solve
the Euler equations for a steady state level of price.
In Appendix A, we provide details on the assump-
tions necessary for a steady state to exist and for our
approach to work.

We can solve for the steady state combination of
prices and state vector using a Euler equation ap-
proach applied to the Bellman equation (see, for
instance, Miranda and Fackler 2002). In steady state,
we can write the Bellman equation as:

V �x�=��x�p�+�V �f �x�p��� (9)

where p= !�x� and x = f �x�p�. Differentiating Equa-
tion (9) with respect to both x and p and applying
the envelope theorem yields a set of three equations
which the steady state must satisfy:

"�

"p
+�

[
"f

"p

]t
#= 0

"�

"x
+�

[
"f

"x

]t
#= #

x= f �x�p��

(10)

Here, # is an NJ vector of derivatives of the value
function V with respect to the state vector. Thus, a
steady state is the three-tuple �x∗� p∗�#∗� which solves
Equation (10). Given the very high dimension of #, it
would be useful if Equation (10) could be simplified

so that we only have to find roots of a smaller number
of equations.

If �I − �$"f /"x&t� is invertible, we can solve for #
and substitute this out of the system in Equation (10):

"�

"p
+�

[
"f

"p

]t(
I −�

[
"f

"x

]t)−1 "�

"x
= 0 (11)

x= f �x�p�� (12)

Equation (11) is an equation in vector notation which
represents J roots. Equation (12) is simply the steady
state condition that the state vector must reproduce
itself. This suggests the following algorithm for find-
ing the steady state solution:

1. Pick x0.
2. Solve for p0 given x0 using Equation (11).
3. Solve for x1 given p0 using Equation (12).
4. Repeat until 
pk− pk−1
< tol.

In our problem, "f /"x = Q. So �I − �Qt� must be
invertible to pursue this approach. Since Qt is the
transition matrix for a Markov chain, its eigenval-
ues are all ≤1. Since � < 1, it is not possible for
�I −�Qt�x= 0 unless x is 0. The invertibility condition
is, therefore, satisfied. In addition, we can compute
the solutions to Equation (12) given p by simply com-
puting the largest eigenvector of Q. This provides the
basis for a very fast algorithm to compute the steady
state. Appendix B provides the derivatives of the pay-
off function with respect to the price and state vectors.

A “brute” force solution to the Euler equations
in Equation (10) would require finding the roots to
2NJ + J nonlinear equations. By substituting out for
# and exploiting the Markov chain structure, we
have reduced the problem to a manageable dimension
(only J roots). It would be impractical to solve Equa-
tion (10) with N > 100, especially many thousands of
times as we do in our application below.

Econometric Specification
We specify a multinomial logit model for each house-
hold type and set the intercept and price of the out-
side good to zero. The probability that household h
chooses alternative j given loyalty to product k is
given by:

Pr�j � s = k�(h�

= exp��hj +�hPricej +	hI�j = k�
1+∑J

l=1 exp��
h
l +�hPricel+	hI�l= k�

� (13)

To accommodate differences across households, we
use a potentially large number of household types
and a continuum of households of each type. Our
approach will be to specify a very flexible but con-
tinuous model of heterogeneity and then use draws
from the posterior of this model as “representative”
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of the large number of consumer types. Each house-
hold in our data will be viewed as “representative” of
a type. We will use Markov chain Monte Carlo meth-
ods to construct a Bayes estimate of each household’s
coefficient vector.

We use a mixture of normals as the distribution of
heterogeneity in a hierarchical Bayesian model.3 With
enough components in the mixture, we will be able
to accommodate deviations from normality as well as
to make our conclusions resistant to outliers. Let (h

be the vector of choice model parameters (see Equa-
tion (1)) for household h. The mixture of normals
model specifies the distribution of (h across house-
holds as follows:

(h ∼N�*ind�-ind�
ind∼multinomial�.��

(14)

where . is a vector giving the mixture probabilities
for each of the k components. We implement posterior
inference for the mixture of normals model of hetero-
geneity and the multinomial logit base model as in
Rossi et al. (2005). We note that it would be a simple
matter to add observables such as demographics to
Equation (14) as in Rossi et al. (2005). In our empir-
ical application, we did not find that demographics
contribute much to explaining differences between
consumers.

Our MCMC algorithm will provide draws of the
mixture probabilities as well as the normal compo-
nent parameters. Thus, each MCMC draw of the
mixture parameters provides a draw of the entire
multivariate density of household parameters. We can
average these densities to provide a Bayes estimate
of the household parameter density. We can also con-
struct Bayesian credibility regions for any given den-
sity ordinate to gauge the level of uncertainty in the
estimation of the household distribution.

Some might argue that you do not have a truly non-
parametric method unless you can claim that your
procedure consistently recovers the true density of
parameters in the population of all possible house-
holds. In the mixture of normals model, this requires
that the number of mixture components (K) increases
with the sample size. Our approach is to fit mod-
els with successively larger numbers of components
and gauge the adequacy of the number of compo-
nents by examining the fitted density as well as the
Bayes factor associated with each number of compo-
nents. What is important to note is that our improved
MCMC algorithm is capable of fitting models with a

3 The combination of heterogeneity and state dependence raises a
potential initial conditions problem. Consistent with past literature
on consumer state dependence, we implicitly assume the initial
state s0 is exogenous and that the joint distribution of heterogeneity
is independent of s0�

large number of components at relatively low compu-
tational cost.

The mixture of normals is a direct generalization
of the normal models typically assumed in the lit-
erature. Another method commonly used is a finite
mixture model. Neither the mixture of normals nor
the finite mixture models enforce a restriction that the
price coefficient be negative, which would be neces-
sary for finite profits and optimal pricing. In typical
applications, this is not a source of concern as the esti-
mates of price coefficients are usually negative. How-
ever, a more satisfactory approach might be to employ
a prior which only puts mass on negative values. This
can be achieved either by using truncated normals (as
in Boatwright et al. 1999) or via reparameterization.
We leave this for future research.

Empirical Results
Demand Estimation
We now present the results from the estimation of the
mixture-of-normals random coefficients logit using
the refrigerated orange juice and the 16 oz. tub mar-
garine shopping data. We use panel data collected by
ACNielsen for 2,100 households in a large Midwest-
ern Scantrack market between 1993 and 1995. The
data contain all purchase behavior for the refrigerated
orange juice and the 16 oz. tub margarine categories
in the two largest supermarket chains. In each cat-
egory, we focus only on those households that pur-
chase a brand at least twice during our sample period.
Table 1 lists the products considered in each category
as well as the purchase incidence, product shares,
and average retail/wholesale prices. Over 85% of the
trips to the store recorded in our panel data do not
involve purchases in the product category. This means
that the outside good share is very large as is typical
in many product categories and analyses of scanner
data. In addition, households who adopt a pattern of
purchasing a product on a regular cycle will be per-
ceived as relatively price insensitive as the changes in
price of the category relative to the outside good will
have little influence on purchase incidence for these
households.

In Table 2, we report the log marginal density
for several alternative model specifications for each
category. The posterior probability of a model spec-
ification is monotone in the log marginal density,
so that by choosing the model with the largest log
marginal density, we are picking the model with the
highest posterior probability (c.f. Rossi et al. 2005).
By comparing models with and without loyalty and
with varying types of heterogeneity, we can assess
the importance of incorporating loyalty and nonnor-
mality. For example, in the margarine category, we
observe that more than one normal component is
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Table 1 Description of Data

Percent
Product Retail price Wholesale price of trips

Refrigerated orange juice category
64 oz. MM 2�21 1�36 1�52
Premium 64 oz. MM 2�62 1�88 0�96
96 oz. MM 3�41 2�12 2�01
Premium 64 oz. TR 2�73 2�07 3�96
64 oz. TR 2�26 1�29 0�93
Premium 96 oz. TR 4�27 2�73 1�09

No purchase (percent of trips) 89.53
No. of households 355
No. of trips per household 89.51
No. of purchases per household 9.37

Margarine category
Promise 1�69 1�22 2�87
Parkay 1�63 1�02 1�10
Shedd’s 1�07 0�83 2�78
Blue Bonnett 1�42 0�76 0�33
ICBINB 1�55 1�11 5�13

No purchase (percent of trips) 87.80
No. of households 455
No. of trips per household 81.02
No. of purchases per household 9.89

Notes. MM—Minute Maid; TR—Tropicana; ICBINB—I Can’t Believe Its Not
Butter.

required to achieve a good fit. In addition, Table 2
confirms that consumer demand for frequently pur-
chased consumer packaged goods (CPG) products
exhibits state dependence even after controlling for
heterogeneity with a very flexible and nonnormal dis-
tribution of tastes. In Appendix C, we find that richer
specifications including demographics, promotional
variables, or brand-specific loyalty coefficients do not
lead to much improvement in model fit.

We now assess the extent of nonnormality of the fit-
ted distributions of taste parameters. Ultimately, our
goal is to estimate the distribution of tastes across
households, not to attach any meaning or substan-
tive significance to the parameters of the mixture
components.

In Figure 1, we plot several fitted densities from
the 1-, 2-, and 5-component mixture models for the

Table 2 In-Sample Fit and the Role of Heterogeneity and State
Dependence

Log marginal density

Model No. of Components Margarine OJ

No loyalty No heterogeneity −19�278�99 −15�888�78
5-component −13�780�92 −11�622�32

Loyalty No heterogeneity −16�524�03 −14�330�43
1-component −13�855�71 −11�503�13
2-component −13�827�89 −11�510�86
5-component −13�739�29 −11�505�56
10-component −13�727�12 −11�478�65

Figure 1 Fitted Densities for Margarine Price, Loyalty, and Brand
Intercepts
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margarine data. We also report the 95% posterior cred-
ibility region for the 5-component mixture model. This
region provides point-wise evidence for the nonnor-
mality of the population marginal density for a given
coefficient. For the price coefficient (upper panel),
the 5-component model leads to a very asymmetric
and slightly bimodal density. In contrast, a symmetric
1-component model has both a mode and tails lying
outside the credibility region for the 5-component
model.

Figure 1 provides compelling evidence of the need
for a flexible model capable of accommodating non-
normality. In both the upper and lower panels, the
brand intercepts from the 5-component model exhibit
striking bimodality that simply can not be captured
by the 1- or 2-component models. The bimodality
exhibited in Figure 1 has the interpretation that there
are households who differ markedly in their qual-
ity perceptions for margarines. In general, the results
suggest that one would recover a very misleading
description of the data-generating process if the usual
symmetric normal (1-component) prior were used to
fit these data.
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Figure 2 Fitted Densities for Orange Juice Price, Loyalty, and Brand
Intercepts
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In Figure 2, we report analogous fitted densities
from the orange juice category. These plots illustrate
why we do not get the same improvement from more
mixing components as we did in the margarine data.
For the orange juice data, the 1-component normal ap-
proximation seems adequate. We note that Bayesian
semiparametric procedures such as the one used here
do not “overfit” the data in the sense of fitting slight
deviations from the data. Even the 5-component mix-
ture model returns estimated densities quite close to
normality for the orange juice category.

Dynamic Category Pricing
We now use the estimated 5-component demand sys-
tems for orange juice and margarine to study the
economic implications of state dependence (i.e., loy-
alty). Each sample household is treated as one of
the N consumer types, where N is the total num-
ber of sample households used. A consumer type’s
tastes are estimated by using the posterior mean of
the households’ choice model coefficients. We trim
those households with positive posterior mean price
coefficients, which eliminates one household in the

Table 3 Tub Margarine (16 oz.) Category Pricing Results: Loyalty vs.
No Loyalty

16 oz. tub margarine

With loyalty Brand intercepts
beta= 0�999 No loyalty (mean of posteriors)

Promise 4�21 3�97 −2�62
Parkay 1�62 1�72 −5�01
Shedd’s 1�17 1�15 −3�65
Blue Bonnett 1�40 1�55 −6�47
ICBINB 2�59 4�20 −2�16
Outside share 0�92 0�94
SS profit ($) 40�18 35�49

Note. SS—steady-state.

margarine category and 13 households in the orange
juice category. Aggregate demand is obtained by sum-
ming over household “types” as in Equation (2).

We use category pricing as our metric of economic
performance. For each category, we compute two sets
of stationary category prices using the demand esti-
mates with and without loyalty. In the latter, we imag-
ine that the retailer calibrates a misspecified demand
system with no loyalty and then uses this demand
system to maximize category profits. Since there is
no loyalty included in this demand system, prices are
set to maximize the static category profits. We con-
trast the no loyalty case to the case where a retailer
is aware of the presence of loyalty and properly cal-
ibrates a demand system with state dependence. In
this case, prices are set to maximize the net present
value of category profits in steady state with a dis-
count factor of � = 0�999. We then compare cate-
gory profits for these two vectors of prices using the
demand system fit with loyalty. Since the demand
specification with loyalty provides a superior fit and
the highest posterior model probability, we refer to
this as the “true” demand system.

Tables 3 and 4 report the stationary price levels for
each product using both demand with and without
loyalty. The tables also report the corresponding sam-
ple level per-period category profits and the category

Table 4 Refrigerated Orange Juice Category Pricing Results: Loyalty
vs. No Loyalty

Refrigerated orange juice

With loyalty Brand intercepts
beta= 0�999 No loyalty (mean of posteriors)

MM 64 2�60 2�39 −2�33
MM 64 PR 3�23 2�97 −2�50
MM 96 3�76 3�18 −1�62
TR 64 PR 3�38 3�85 −0�84
TR 64 2�20 2�04 −2�62
TR 96 PR 4�38 4�52 −1�13
Outside share 0�88 0�92
SS profit ($) 33�17 31�69
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Figure 3 Posterior Distribution of Prices and Category Profits: Refrigerated Orange Juice
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outside share. These calculations were obtained by
aggregating demand over each consumer type with
parameters set to the posterior mean for that house-
hold. In the profit calculations, we measure costs as
the mean wholesale list prices of each product using
Leemis data on wholesale list prices. In both cate-
gories, profits are considerably lower when steady-
state prices do not account for loyalty. In the orange
juice category, the stationary per-period profits are 4%
lower when loyalty is ignored. The profits are over
11% lower in the margarine category.

Our goal is to explore the implications of loyalty
or state dependence for optimal pricing. The results
reported in Tables 3 and 4 confirm that there are
important differences in pricing policy that arise from
the presence of loyalty. These computations were
undertaken using the posterior mean of household
parameters as the Bayes estimator for each household
“type.” There is a good deal of parameter uncertainty
in each of these household point estimates. To under-
stand the implications of this uncertainty for optimal
prices and profits, we use draws from the posterior
distributions of household parameters. The posterior
distribution of optimal profits is induced by the joint
posterior distribution of household parameters:

0�p∗ � (1� � � � � (H�=
�∑
t=0

�t��p∗�(1� � � � � (H��x
∗��

Here p∗ is the optimal stationary price which is a func-
tion of the household parameters and costs, and �
is the one period payoff function defined in Equa-
tion (8). Note that the stationary state vector is also an
implicit function of the household parameters since
this vector solves the equation x∗ = f �p∗�x∗�. Given
that we have draws for the household parameters, it
is possible to compute the posterior distribution of
aggregate profits.

In Figures 3 and 4, we report the full posterior dis-
tribution of profits4 in each category under the “with
loyalty” and “with no loyalty” cases. In both cate-
gories, we see a decline in profits even after account-
ing for uncertainty around our demand parameters.
Disregarding loyalty in long-run pricing decisions
results in a net value loss to the category manager.
We should note that even though individual house-
holds may have imprecisely estimated parameters,

4 We note that the support of the posterior distribution of the price
coefficient includes positive values. There is a very small mass
on this tail but nonetheless it exists. This means that the poste-
rior distribution of profits has a small mass on an infinite level of
profits. Comparison of two posterior distributions as in Figures 5
and 6 is still valid even with some support on infinite values (we
could not, however, compute moments of these distributions). For
optimal price computations, we delete draws with positive price
coefficients.
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Figure 4 Posterior Distribution of Prices and Category Profits: 16 oz. Tub Margarine
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this does not mean that we estimate aggregate prof-
itability imprecisely. Figures 3 and 4 show that with
an economically meaningful profit metric, we can dis-
cern the impact of acknowledging loyalty even in the
presence of considerable household level uncertainty.

The overall loss in value to each category is
attributable to qualitative differences in how the cat-
egory manager sets prices in the presence of loyalty.
Tables 3 and 4 suggest that, after accounting for loy-
alty, the category manager lowers the prices on the
highest average perceived-quality products relative to
those of lower quality products. For example, “I Can’t
Believe It’s Not Butter (ICBINB)” in the margarine cat-
egory and “Premium 64 oz. Tropicana” in the orange
juice category have the highest mean brand intercepts.
When loyalty is not accounted for, the manager sets
much higher prices for these items. Figures 3 and 4
confirm this finding by reporting the entire posterior
distributions of these prices under the loyalty and no
loyalty cases.

At first glance, these pricing patterns seem counter-
intuitive. With loyalty, the dynamics of the category
require a forward-looking manager to use prices not
only to collect revenues, but also to control the state
(i.e., the flow of loyal customers). The demand model

allows for both horizontal and vertical product dif-
ferentiation. The nonlinearity of the demand model
implies that a higher quality (i.e., vertically differen-
tiated) item has a higher marginal profitability from
loyalty. A forward-looking retailer will use prices to
migrate customers from lower quality to higher qual-
ity brands in order to reap the greater future benefits
from loyalty to the latter. Some consumers will con-
tinue to purchase the lower quality products based on
their horizontal characteristics. A myopic retailer will
set higher prices on the high quality brands as she
does not anticipate the benefit of creating customers
loyal to the high quality brands.

Exploring Different Parameter Settings
In this section, we explore the theoretical underpin-
nings of the pricing results discussed in the previ-
ous section. By varying either the discount factor or
the level of the state-dependence coefficient, we can
manipulate the magnitude of the long-run “future”
profit implications of current prices. By varying the
degree of vertical product differentiation, we can also
manipulate the incentives to the retailer to use prices
to control the flow of loyal customers. To simplify our
discussion, we consider a model with only two prod-
ucts, 64 oz. premium Minute Maid and 64 oz. pre-
mium Tropicana, where the latter is found on average
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Figure 5 The Effect of the Discount Factor on Relative Prices
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to have a higher perceived quality. For simplicity, we
assume they both have the same costs (i.e., wholesale
prices).

In Figure 5, stationary price levels are plotted
against the discount factor. For a low discount fac-
tor, we find that the manager assigns a higher price
to the product with the higher perceived quality, 64
oz. premium Tropicana. However, for relatively large
discount factors, the price differential shrinks. In fact,
for very high discount factors, the manager lowers
the price of the high quality good below that of
the low quality good.5 At these very high discount
factors, the long-run effects of pricing have a big-
ger impact on long-run profits. The motive to use
prices to control consumers’ product loyalties puts
downward pressure on the high quality good’s price.
Hence, a more patient retailer puts more weight on
the long-run effect of prices and, hence, fundamen-
tally changes the relative prices in the category to
push consumers toward the higher quality product.
In Appendix C, we show that these results are robust
to richer empirical specifications including brand-
specific loyalty coefficients and controls for features
and displays.

In Figure 6, we vary the degree of loyalty. At each
point along the x axis, we have multiplied each con-
sumer type’s estimated loyalty coefficient by the cor-
responding scale (which varies from 0 to 2). For low
levels of loyalty, as we increase the degree of loy-
alty, we observe a shrinking of the price differential
between the high and low quality goods. However, as
loyalty becomes sufficiently large, we see once again

5 The per-period profits are also higher than when � = 0 because
the price of the low quality good is raised.

Figure 6 The Effect of Loyalty on Relative Prices
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a switch in the rank order of prices. The intuition is
the same as in the case of raising the discount fac-
tor. As loyalty becomes larger, the manager becomes
more concerned about the long-run effects of prices.

In Figure 7, we vary the degree of vertical product
differentiation by varying the difference in the brand
intercepts. If the products did not exhibit any asym-
metries, loyalty would not introduce any real dynam-
ics into the model. Rather, both products would have
equal amounts of loyal customers so that loyalty
would simply amount to an outward shift in demand.
At each point along the x axis in both panels, we have
set the difference in each household’s taste for prod-
ucts 1 and 2 equal to the actual estimated difference
multiplied by the corresponding scale. In the upper

Figure 7 The Role of Product Differentiation on Relative Prices
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panel, we set the discount factor to zero and in the
lower panel we set the discount factor to 0.999.

In both panels, when the demands are symmetric
(i.e., no difference in the brand intercepts), we obtain
identical prices for the myopic manager (beta = 0)
and for the forward-looking manager (beta = 0�999).
Hence, dynamics play no role once we have symmet-
ric demands. However, as we increase the asymmetry
(i.e., quality differential) between the two products,
we see an increasing gap in the prices of the two
goods. For the myopic manager, the high quality
product has the relatively high price. However, for
the forward-looking manager, the low quality product
has the relatively high price.

Conclusions
Our results suggest that loyalty is both statistically dis-
cernable and has meaningful economic consequences.
The estimated loyalty values have a large influence
on category pricing. Ignoring loyalty leads to lower
long-run total category profits. In addition, our find-
ings suggest that a rational category manager should
set category prices differently in the presence of loy-
alty. In particular, the manager may reduce the relative
price of the high quality items. This change in pric-
ing structure arises from the combination of consumer
loyalty on the demand side and forward-looking cate-
gory pricing on the supply side. At first glance, these
relative pricing results may seem counterintuitive—
lower margins on the higher quality products than in
the static case without state-dependent demand. How-
ever, here we must recognize that the retailer seeks
to maximize the net present value of total category
profits. Customers who are loyal to the high qual-
ity (lower price elasticity) products are more valu-
able than customers loyal to the lower quality prod-
ucts. Thus, the investment motive (in loyals) causes
the retailer with long-run profit maximization objec-
tives to lower prices on higher quality brands relative
to the case in which there is no loyalty effect.

By exploiting the Markovian structure of the model,
we can compute stationary price levels directly from
the Euler equations of the category profit maxi-
mization problem. We circumvent the usual curse
of dimensionality that limits approaches requiring
the evaluation of the optimal pricing policy. This
approach enables us to consider a much richer scope
of differentiated products and heterogeneous con-
sumer types. As a result, we can base our pricing
calculations on real demand estimates from scanner
panel data.

Our approach of using Euler equations to compute
the optimal steady state prices for dynamic models can
be used to tackle other more complicated models of
state dependence such as those that include multiple
lags of the loyalty variable or that include a “wear out”

effect for brand loyalty. Thus, future research could
probe more deeply into the sources of consumer brand
loyalty and their implications for pricing. We believe
that this is an exciting opportunity for future research.
In a very general sense, we have made computations
possible for a large class of retail dynamic pricing
models which, heretofore, have eluded solution.

A limitation of the use of Euler equations is that
they can not be used to solve dynamic models in
competitive environments. The literature has yet to
develop methods for solving competitive dynamic
pricing problems in the context of rich differentiated
products demand systems like the ones estimated
herein. We view this as an important direction for
future research.
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Appendix A

Existence of a Steady State and Solution to the Dynamic
Pricing Problem
In this section, we prove the existence of an optimal pricing
policy and provide a sufficient condition for the existence of
a steady state with a corresponding price level p∗ = !�x∗�.

The state space for the category pricing problem, X ⊆
�JN , is a convex and compact set. We restrict the firm’s
choice of prices to some bounded rectangle p ∈ A = $0� a1&
×· · ·× $0� aJ &� Each aj needs to be finite but can be chosen to
be arbitrarily large. Therefore, the current period profit func-
tion ��p�x� is bounded and continuous on A×X. By Theo-
rem 4.6 in Stokey and Lucas (1989), there is a unique value
function V 5 X→� that satisfies the Bellman Equation (8).

In order to prove the existence of a steady state, we make
the following assumption:

Assumption. For each state x, there is a unique price that
maximizes the right-hand side of the Bellman Equation (9).

Define the mapping G�x�=Q�!�x��x. Assuming the opti-
mal pricing policy function is used, G maps the current
state xt into next period’s state xt+1 = G�xt�. Applying the
theorem of the maximum, ! is continuous and hence G is
also continuous. Furthermore, G is a mapping from the con-
vex, compact set X into itself. Brower’s fixed point theorem
then implies that G has a fixed point x∗ =G�x∗�. This fixed
point is a steady state of the dynamical system correspond-
ing to our pricing problem.

Note that, in general, the steady state may not be unique.
Also, given that we allow for a very flexible distribution
of heterogeneity in tastes, the assumption that there is a
unique optimal price at each state may be violated. In that
case, a steady state need not exist. In practice, we find
x∗ and the corresponding optimal price p∗ = !�x∗� using
the algorithm proposed above. In our application, we were
always able to compute a steady state and did not find any
evidence for nonuniqueness.
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Appendix B

Derivatives of Profit Function and Transition
Probabilities
Equation (11) provides the Euler equation whose roots can
be used to find the stationary price and state vector. In this
appendix, we provide the details about the computation of
the necessary derivatives in this equation.

We must first recognize that the single period payoff or
profit function is the sum of the single period profit func-
tions for each household type. In addition, the state vector
evolves according to a block-diagonal Markov chain:

��xt� pt�=
N∑
i=1

��i��xt� pt�

xt+1 =



x1� t+1

���

xN� t+1


= f �xt� p�=



f �1��x1� t� p�

���

f �N��xN� t� p�




=



Q1 �pt� x1� t 0 0

0
� � � 0

0 0 QN�pt�xN� t


 �

Thus, the Euler equation can be written as the sum of
various differentials for the N types of households:

N∑
i=1

(
"w�i�

"p
+�"f

�i�

"p
�I −�Qi�−1 "w

�i�

"x

)
�

We will provide the formulas for each of these terms, sup-
pressing the redundant type superscript:

"w

"x
= "

"x
�xt�Pr�p�t�p− c��= Pr�p�t�p− c��

Here, Pr �p� is the matrix of conditional choice probabilities:

Pr�p�= $Pr�i � loyal to j�&= exp�xti� j(�

1+∑
l exp�xtl� j(�

"w

"p
= "

"p
��p− c�t Pr�p�x�= Pr�p�x+ �p− c�t

[
"

"p
Pr�p�x

]
�

The derivative of Pr�p�x is a J × J matrix with elements
given by:

"

"p
�Pr�p�x�=

[ J∑
k=1

"

"pj
�Pr�i � loyal to k�xk�

]
�

with

"Pr�i � loyal to k�
"pj

=


−Pr�i � k�Pr�j � k��

Pr�i � k��1−Pr�i � k���
�

Finally, "f /"p (also a J × J matrix for each type) can be
obtained in a similar manner:

"f

"p
= "

"p
�Q�p�x�=

[ J∑
k=1

"

"pj
�qi�k�xk

]
�

with

"

"pj
�qi�k�=




"

"pj
�Pr�i � loyal to k�� if i �= k

"

"pj
�Pr�i � loyal to i�
+Pr�outside good � loyal to i�� if i= k

and
"

"pj
�Pr�outside good � loyal to i��

=−Pr�outside good � loyal to i�Pr�j � loyal to i��

Appendix C

Robustness Checks
Our demand model in Equation (13) is a simple specifica-
tion that has been used widely in the empirical literature.
This model includes price and loyalty terms and unob-
served heterogeneity in all coefficients. It is certainly possi-
ble to complicate this model by the addition of interactions
with demographic variables, promotional variables such as

Figure C.1 Robustness Checks
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feature and display, and the use of product-specific loy-
alty coefficients (in the spirit of Guadagni and Little 1983).
We have estimated each of these more elaborate models.
The addition of standard demographic variables (household
income, household size, and a dummy for female head age)
add little to the fit and do not change the distribution of
loyalty across households. Addition of brand-specific loy-
alty coefficients does make a modest (<1%) difference in the
log marginal density or posterior model probability. Addi-
tion of feature and display variables also makes a modest
(about 1%) improvement in fit. However, the real question
is whether or not the solutions to the dynamic pricing prob-
lem are sensitive to these changes in model specification.
In Figure C.1, we provide pricing results for the model with
brand-specific loyalty (top panel) and the model with pro-
motional variables (bottom panel). These results should be
compared with our simple model results in Figure 5. The
qualitative results remain unchanged. We still find that the
relative price of high quality to low quality products is
reduced.
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