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PART (A) 
A1. Inversion of the demand function 
 
In this section of the appendix, we show that our proposed procedure (equation 12) for inverting 
the expected demand function (equation 11) to recoverδ  is a valid contraction mapping. That is, 
iteratively solving (12) converges to a vector δ  that uniquely reconciles � jstQ  in equation (11) 

with the average quantity per customer in the data, jstq . Once we recover the vector of δ -s 
implied by (12), we are able to control for the potential endogeneity of prices using instrumental 
variables, and estimate all parameters by the method of simulated moments.  
 
The expected demand function (equations 10/11) implied by the model is: 
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The iterative function ( ). : J Jg →� �  (equation 12) is defined as: 

( ) ( ) � ( )ln lng q Qδ δ δ� �= + − � �       (A1) 

We show that our iterative procedure ( ).g  is a valid contraction mapping by proving that it 
satisfies the conditions described in appendix 1 of BLP (1995). The subscripts s for ‘store’ and t 
for ‘week’ are dropped for clarity. The main conditions to prove are: 
 
a) ( ).g  is continuous in δ  
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The function is continuous by construction. We prove (b) in two parts. First, we show that 
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Comparing the numerator of the second term above to line 1 of equation (A0), we can see that for 
( )j
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0≥ , it is equivalent to prove that: 
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which is equivalent to showing that ( ) ( ) ( ){ }Pr 1 1 Pr 0 ln Pr 0 0i i i iC j I I I� �= = − = + = ≤� � . This holds 

since ( ) [ ]Pr 0 0,1= ∈iI . QED. 
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QED. 
 
(c) To show that the sum of the derivatives is less that 1, note that: 
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where,  
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Comparing the numerator of the second term in (A4) to line 1 of equation (A0), we can see that 

for 
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∂� , it is equivalent to prove that: ( ){ }ln Pr 0i if I< − = . This reduces to showing that 

( ) ( ) ( ){ }Pr 1 Pr 1 ln 1 Pr 1 0i i iI I I� �= = + − = <� � . This holds since ( ) [ ]Pr 1 0,1= ∈iI . QED. 

 
Hence, ( ).g  is a valid contraction mapping, and therefore, iteratively solving (A1) will converge 
to a unique vector δ .  
 
A2. Method of Simulated Moments procedure 
 
In the above section, we have shown how, for a given guess of the parameters Θ , we can recover 
the unique vector ( )jstδ Θ  that exactly solves (11). With ( )jstδ Θ  in hand, we now set up the 
method of simulated moments (MSM) procedure to estimate all the parameters. We outline the 
technical details of GMM below, referring the interested reader to Hansen (1982) for a formal 
discussion. First, note that ( ) ( )ln=Θ − +jst jst s jst jstX B pδ α ξ ; hence, given ( )jstδ Θ , we can recover the 

structural error vector, ( ) ( ) ( )lnΘ = Θ − +jst jst jst s jstX B pξ δ α  across all store-weeks as a function of 

parameters, Θ . We use moments implied by ( ) ( ) ( )lnΘ = Θ − +jst jst jst s jstX B pξ δ α  to construct 
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orthogonality conditions. Parameters are estimated by making the sample analogue of the 
orthogonality conditions as close to zero as possible. Technically, we can construct orthogonality 
conditions using any set of covariates, Zst, that are mean-independent of 

jst
ξ . The concern for 

endogeneity arises since prices are expected to be correlated with ( )
jst

ξ Θ . To resolve this, we 
construct moment conditions using a vector of instruments that includes the exogenous brand 
variables as well as wholesale prices that are assumed to be independent of 

jst
ξ . Formally, we use 

the conditional mean-independence assumptions, [ ]' | 0
st st st

E Z Zξ = . We define the sample 
analogue of the moment vector: 

� ( ) ( )'M Z ξΘ = Θ�      (A5) 

Let � ( ) � ( )( ) 1

'W E M M
−

= Θ Θ� �� �
�  be an estimate of the asymptotically optimal weighting matrix.1 

Given these moment conditions, we can now estimate all parameters by minimizing the GMM 
objective function ( ) ( )ˆ'M WMΘ Θ . The asymptotic properties of our estimates are based on the 
Method of Simulated Moments (Pakes & Pollard 1989).  
 
A3. Monte Carlo simulation study 
 
The objective of the simulation study is to investigate the ability of the proposed model to recover 
the true model parameters from (simulated) aggregate data formed by aggregating over the 
choices of an underlying population of consumers not constrained to single-unit purchases. We 
first consider the case where there is no heterogeneity in tastes, and then consider the case where 
there exists heterogeneity in tastes for the brands. For the latter, we also evaluate the performance 
of our proposed model when the unobserved brand characteristics, 

jst
ξ , are non-zero but 

uncorrelated with price. For the DCM case with endogeneity see Berry (1994). 
 
For simplicity, we analyze the case where there are two alternatives in the choice set. These two 
alternatives can either be interpreted as one brand with an outside good or as two brands in a 
model where one restricts attention to only the inside goods. Actual scanner data from a two-
brand product category are used for prices and promotions. The data comprises of prices and 
promotions at the chain level for 90 weeks for the oats category, in which Quaker Oats and the 
Dominick’s store brand are the only two major brands. Price and promotional variables for the 
model were created by taking the difference of the variables across the two brands. No other 
variables including demographics were included. Average expenditures of consumers for each of 
the 90 weeks were simulated as Uniform(5,20). Average quantities per consumer for the 90 weeks 
were generated by integrating over the expected demands of consumers who are allowed to make 
multiple-unit purchases. Parameter values for the intrinsic preference, price and promotion 
sensitivities were chosen to reflect the range of values that one typically obtains in aggregate 
discrete-choice models for frequently purchased grocery categories. 30 replications are used for 
the simulation. 
 
Table A1 reports the results of the estimation. The results reveal that for the range of parameter 
values considered, the proposed model does a good job of recovering all the parameters.  
 
We now investigate the performance of the model in the presence of unobserved heterogeneity. 
Again, to keep the estimation simple, we allow for unobserved heterogeneity in just the intrinsic 

                                                 
1 Correcting for both potential serial dependence and spatial dependence across stores using a non-parametric approach 
(Conley 1999) generated negligible changes in the currently reported standard errors. 
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preference parameter. The number of draws for simulating the integral was fixed at 100. We 
consider four separate cases, corresponding to the four combinations of no/some variance in the 
unobserved fixed effect 

jst
ξ , and low/high variance in the intrinsic preference heterogeneity. The 

results are reported in Table A2. and correspond to the means, standard deviations and mean 
absolute percentage deviations (MAPD-s) of the recovered parameter values for the four cases, 
across 30 replications. The top panel in Table A2 corresponds to the cases with low and high 
variance in the intrinsic preference heterogeneity with no variance in the unobserved fixed effect, 
and the bottom panel corresponds to the cases with low and high variance in the intrinsic 
preference heterogeneity with some variance in the unobserved fixed effect. The results reveal 
that for the range of parameter values considered, the proposed model does a good job of 
recovering the intrinsic preference and the price and promotion sensitivity parameters. The 
variation in the standard deviation in the intrinsic preference heterogeneity across replications is 
high, but is comparable to those of the single-unit logit (see Chintagunta 2000). This is expected 
to improve with access to more cross sectional data (at the store-level as in our empirical 
application), and using more draws and better simulation techniques (c.f. Bhat 2001). 
 
We conclude that our proposed model can recover the true model parameters from the aggregate 
data in the presence of multiple-unit purchases. Finally, we also note that the proposed model can 
accommodate situations where consumers typically buy a single-unit of the chosen brand. To see 
this, suppose that we run the proposed model on aggregate data generated using individual-level 
parameters that imply an expected conditional quantity of 1. As shown above, the model will be 
able to recover those parameters from the aggregate data and will thus predict that individuals in 
that category typically buy 1 unit of the chosen good in expected terms. 
 
�
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Table A1. Monte Carlo Results with no heterogeneity 

�

�

�

�

�

�

Table A2. Monte Carlo Results with heterogeneity in intrinsic preferences 

�

 True and estimated parameter values for the discrete/continuous model 
Variable 

True Model True Model True Model True Model True Model True Model 
Intrinsic preference -4.5 -4.4659 -4.5 -4.4575 -4.5 -4.4733 -4.5 -4.4803 -4.5 -4.4800 -4.5 -4.4831 
Price sensitivity 1.5 1.5448 2.0 2.0499 2.5 2.5386 3.0 3.0320 3.5 3.5471 4.0 4.0366 
Promotion sensitivity 0.5 0.4177 0.5 0.4129 0.5 0.4182 0.5 0.4024 0.5 0.4252 0.5 0.4282 

 Var(
jst

ξ )=0 

 Low std. deviation in intrinsic preference High std. deviation in intrinsic preference 
 True Mean Std. Dev MAPD True Mean Std. Dev MAPD 
Intrinsic preference -6.000 -5.883 0.199 1.539 -6.000 -5.529 0.302 3.684 
Price sensitivity 2.000 1.998 0.139 2.069 2.000 1.983 0.136 4.305 
Promotion sensitivity 0.500 0.505 0.195 2.864 0.500 0.490 0.211 5.882 
Std. Deviation in intrinsic preference 0.500 0.010 0.607 31.231 1.000 0.028 1.185 43.671 
 Var(

jst
ξ )=1 

 Low std. deviation in intrinsic preference High std. deviation in intrinsic preference 
 True Mean Std. Dev MAPD True Mean Std. Dev MAPD 
Intrinsic preference -6.000 -6.536 1.200 24.637 -6.000 -5.665 1.297 28.650 
Price sensitivity 2.000 1.897 0.609 14.430 2.000 1.637 0.626 19.274 
Promotion sensitivity 0.500 0.652 0.382 18.508 0.500 0.563 0.671 21.641 
Std. Deviation in intrinsic preference 0.500 0.303 0.811 67.498 1.000 0.305 1.298 84.750 
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PART (B) 
 
B1.  Monte Carlo: Brand-choice, then quantity Poisson model 
 
In this study, we generated data from a brand-choice-then-quantity model that is analogous to 
Dillon and Gupta (1996). In this model, the probability that a consumer will purchase the product 
is given by a logit. And conditional on purchase, the quantity chosen is given by a truncated 
Poisson. The goal of the study was to explore the predictions of the proposed model for choice 
probabilities and quantities, if the data were generated by the above model. For simplicity, we 
consider the case in which a homogenous set of consumers choose between 1 product and an 
outside good. In this model, the probability that the product is purchased, d = 1, is: 
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Conditional on purchase, the quantity chosen is distributed a truncated Poisson: 
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Then, the expected per consumer demand is: 
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Let y denote expenditures. To capture the dependence of expected quantities on prices and 
expenditures, we pick the specification ( )( )exp ln y pλ = − . We first generate N = 200 

expenditures (y) as uniform(5,20) and prices as uniform(2,5). We then generated expected per-
consumer demands from the above brand-choice-then-quantity model for various values of the 
parameters, and then ran the proposed model on that data. Table B1 shows the results averaged 
across 100 replications. In the table, ( )Pr 1d = refers to the true and predicted mean probability of 
purchase and ( )1, 0E Q d Q= >  refers to the true and predicted expected conditional quantity.  

 
As we see from the results in table B1, the proposed model does a reasonable job of recovering 
the choice probabilities and conditional quantities from the data. We take the performance of the 
model in the above situation as an indication that the model does not strongly a priori restrict 
choice probabilities and conditional quantities. 
 
B2.  Monte Carlo: Model that implies unitary expected quantities 
 
In this study we generate data from the proposed model with parameters that imply an expected 
quantity of one, conditional on purchase. The goal is to demonstrate that the model is flexible 
enough to accommodate situations in which consumers have only unitary conditional demands. In 
particular, we demonstrate that the estimated results from the model will not be “wrong” we ran it 
on aggregate demand data generated by consumers that buy a single-unit of their chosen 
alternative. 
 
As before, we generate N = 200 expenditures (y) as uniform(5,20) and prices as uniform(2,5). We 
consider the homogenous 1 product case with two parameters, viz., an intercept and prices. The 
intercept and price sensitivity were varied so that the true model predicts an expected conditional 
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quantity  = 1. The results from running the proposed model on this data are shown in Table B2. 
The columns under “model” refer to the estimated intercept, price sensitivity and implied mean 
quantity averaged across 100 replications. 
 
We again see that the model does a very good job of recovering the true parameters and also 
predicts that the conditional quantities are unitary. This is not surprising since we have already 
showed in our previous Monte Carlo studies (table A1) that the model does an excellent job of 
recovering the true parameters from the data if the data are indeed generated by the 
discrete/continuous rule. 
 
B3. Simulation: Divisibility of quantities 
 
Here we explore the implications of the control for the discreetness of purchase quantities as in 
Arora, Allenby and Ginter (1998) (henceforth AAG) for our aggregate demand system. The goal 
of the study is to evaluate the impact of the divisibility assumption on purchase quantities on our 
aggregate demand system. The AAG framework is analogous to the Hanemann (1984) and 
Chiang (1991) model. Our model can be viewed as the aggregate analog of the AAG framework 
in which quantities as treated as being divisible. For simplicity, here we consider the 1 alternative 
case in the AAG framework.  
 
AAG allow for discrete quantities and have the following set up for choice probabilities, 
 

( ) ( )( ) ( )( )( )ln lnPr 1p pj e eα γ µ α γ µ− −= +     (Equation 10, pg. 33 in AAG) 

 
and, conditional quantities, 
 

( ) ( ) ( ) ( )0 Pr 0.5 0.5j j jp q Q q F q p F q pγ γ� � � �= = = + − −� � � �  (Equation 11, pg. 33 in AAG) 

 
where, F(.) is the cdf of an extreme value distribution with location parameter ( )ln pα γ −  

( )( )ln 1 Pr jµ+  and scale parameter µ . This explicitly takes care of the discrete nature of 

conditional quantities. 
 
The corresponding expected conditional quantity to this model is: 
 

[ ] ( )0discrete 1
*

q
E Q q p q

∞

=
= � �� �� . 

 
It is this expected conditional quantity that enters the aggregate demand function corresponding 
to this model. The only difference between this and our approach is that rather than use [ ]discrete

E Q  
in the aggregate demand equation, we use the analytically computed expected conditional 
quantity function: 
 

[ ] ( ) ( ){ }( )continuous
ln ln 1 Prj

j

E Q p j
p
γ α γ µ� �= − + Γ +� �

, where Γ  is Euler’s constant. 

 
The choice probabilities are not different between this case and ours. So differences in the 
aggregate expected demand function between discrete and continuous quantity cases would arise 
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only if there are large differences between [ ]discrete
E Q  and [ ]continuous

E Q . We can check this by 
simulation. 
 
We first generated N (=100) prices from uniform(2,4), and computed [ ]discrete

E Q  and [ ]continuous
E Q  

for various values of  α γ  and γ . For all computations, 1µ = , and " " 50∞ = (in the summation on 

[ ]discrete
E Q ). The results are given in Table B3. We see that the difference in expected conditional 
quantity between the two cases is quite small. And since it is the expected quantity that impacts 
the aggregate demand functions, the difference between the two cases is likely to be very small.  
 

 TRUE MODEL TRUE MODEL TRUE MODEL TRUE MODEL 

β = 3.5 α = -3 α = -4 α = -5 α = -6 

( )Pr 1 *1e3d =  0.0011 0.0012 0.3435 0.3814 0.1477 0.1802 0.4992 0.5421 

( )1, 0E Q d Q= >  1.2966 1.1702 1.2867 1.1998 1.3116 1.1449 1.3084 1.2542 

α = -5 β = 2.5 β = 3 β = 3.5 β = 4 

( )Pr 1 *1e3d =  0.3932 0.3461 0.2325 0.2211 0.1637 0.1949 0.0823 0.1122 

( )1, 0E Q d Q= >  1.2880 1.5976 1.3169 1.4720 1.3481 1.1976 1.2894 1.0103 

 
Table B1: Simulation results from running the proposed model on data from brand-choice-Poisson model 

 

 TRUE MODEL TRUE MODEL TRUE MODEL TRUE MODEL 
Intercept -5.00 -4.98 -4.00 -3.99 -3.00 -2.98 -2.00 -2.00 
Log(Price) 3.50 3.51 3.60 3.62 3.70 3.72 3.80 3.81 
Mean conditional quantity 1.0642 1.0599 1.0631 1.0580 1.0348 1.0287 1.0084 1.0101 

 
Table B2: Simulation results from running proposed model on data from model with expected quantity = 1 

 
α γ = 3.0 γ = 1.0 

γ  [ ]continuous
E Q  [ ]discrete

E Q  α γ  [ ]continuous
E Q  [ ]discrete

E Q  

1.0 0.9677 0.9833 3.0 0.8960 0.9150 

1.1 1.0644 1.0807 3.1 0.9257 0.9492 

1.2 1.1612 1.1767 3.2 0.9558 0.9831 

1.3 1.2580 1.2720 3.3 0.9862 1.0166 

1.4 1.3547 1.3671 3.4 1.0169 1.0496 

1.5 1.4515 1.4623 3.5 1.0479 1.0820 

1.6 1.5483 1.5577 3.6 1.0791 1.1137 

1.7 1.6450 1.6533 3.7 1.1106 1.1447 

1.8 1.7418 1.7491 3.8 1.1422 1.1750 

1.9 1.8386 1.8451 3.9 1.1741 1.2047 

2.0 1.9353 1.9413 4.0 1.2062 1.2339 

 
Table B3: Comparison of expected conditional quantity under discrete and continuous cases 
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  Share of market 
  Parameter Std. Error. 
Store characteristics Holiday -0.38 0.09 
 Average income -1.69 0.36 
 Mean residential value 0.02 0.00 
 Proportion of population of age > 60 -1.11 0.68 
 Proportion of ethnic population 0.23 0.46 
 Shopping index 2.09 0.37 
 Distance to nearest Jewel 0.31 0.03 
 EDLP -0.04 0.01 
Log Price Index Analgesics 1.95 0.33 
 Bath soap 0.58 0.13 
 Beer -5.12 0.79 
 Bottled juices -3.57 0.86 
 Canned cooking soups 2.26 0.55 
 Cereals 0.62 0.42 
 Cigarettes -1.66 0.80 
 Cookies -1.92 0.54 
 Crackers -0.13 0.77 
 Dish detergent (liquid) 0.48 0.72 
 Canned eating soups -1.87 0.50 
 Front-end candies 0.50 0.52 
 Frozen dinners 1.51 0.39 
 Frozen entrees 1.73 0.34 
 Frozen juices -0.74 0.34 
 Fabric softeners -1.24 0.96 
 Grooming products -1.15 0.42 
 Laundry detergents -1.10 0.82 
 Non-sliced cheeses (shredded, party, etc.) 1.50 0.49 
 Dish detergent (powder) -0.92 0.50 
 Canned salmon, crabs, etc 1.06 0.36 
 Oatmeal -2.83 0.66 
 Paper towels -3.11 1.24 
 Refrigerated juices -0.20 0.16 
 Sliced cheeses 3.09 0.66 
 Soft drinks 2.05 0.64 
 Shampoos 0.70 0.79 
 Snack crackers 1.65 0.59 
 Soaps 1.38 1.39 
 Toothbrushes -4.60 1.09 
 Canned tuna -0.43 0.26 
 Toothpastes -0.83 0.50 
 Bathroom tissues -3.89 0.85 
Constant 44.14 5.15 
Number of observations 1486 
R2 0.37 

 
Table B4: Regression of share of traffic on store characteristics and category price indices 
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Variable With Display as 
instrument 

Without Display as an 
instrument 

 Parameter t-stat Parameter t-stat 

MinuteMaid 64 oz -3.147 -30.863 -3.124 -29.087 
MinuteMaid  96 oz -3.892 -35.535 -3.915 -33.772 
Dominicks  64 oz -3.874 -42.220 -3.859 -41.116 
Tropicana Prm 64 oz -2.464 -22.499 -2.480 -21.411 
Tropicana SB 64 oz -3.432 -32.955 -3.401 -31.218 
Tropicana Prm 96 oz -2.973 -25.989 -3.010 -24.709 
Florida 96 oz -6.075 -69.179 -6.040 -67.214 

-Log(price) 2.614 28.767 2.531 25.646 

Display 0.467 17.945 0.486 17.456 
-Log(price)*ethnic 3.963 11.394 3.957 11.103 

-Log(price)*hval150 -2.737 -25.379 -2.705 -24.915 

Ethnic 5.116 15.362 5.023 14.745 
Hval150 -1.809 -17.721 -1.815 -17.676 
Drvtm -0.039 -6.072 -0.040 -6.296 
Age60 0.422 3.499 0.500 4.124 
Hhlarge 0.064 2.140 0.074 -2.460 
     
Objective function 1026.67 1053.69 

 
Table B5: Parameter estimates (homogenous case) with and without display as instruments 

 

 MODEL 1 MODEL 2 
 Parameter Std. error Parameter Std. error 

MM 64 -0.991 0.212 -1.322 0.170 
MM 96 -1.024 0.211 -1.332 0.176 
TR 64 0.314 0.245 -0.038 0.201 
TR 96 -1.240 0.274 -1.587 0.224 
Price -85.047 5.839 -82.832 4.826 
Feature 0.085 0.070 0.109 0.070 
Display 1.977 0.380 2.104 0.403 
Inventory   1.300E-03 1.000E-04 

 
Table B6: Results with and without including inventory 

 

 OWN-PRICE ELASTICITY 

 Brand Observed inventory Zero inventory Max: inventory 

 MM 64 -2.88 -2.89 -2.85 

 MM 96 -2.88 -2.89 -2.86 

 TR 64 -3.32 -3.34 -3.26 

 TR 96 -3.72 -3.72 -3.71 

 
Table B7: Effects of including inventory on price elasticities 


