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Discrete choice models of aggregate demand, such as the random coefficients logit, can handle large differ-
entiated products categories parsimoniously while still providing flexible substitution patterns. However,

the discrete choice assumption may not be appropriate for many categories in which we expect consumers may
purchase more than one unit of the selected item. We derive the aggregate demand system corresponding to a
discrete/continuous household-level model of demand. We also propose a method-of-simulated-moments pro-
cedure that provides consistent estimates of the structural parameters when only aggregate data are available.
The procedure also enables the researcher to control both for the potential endogeneity of marketing variables as
well as potential heterogeneity in consumer tastes. Using our aggregate estimates, we can measure the decom-
position of price elasticities into incidence, brand choice, and purchase quantity components. We also propose
several empirical tests to assess the validity of the discrete/continuous demand system versus that of the logit
model. In several simulation experiments, we demonstrate the robustness of this model across datasets in which
quantity choices may or may not be important. Our empirical calibration to store-level data in the refrigerated
orange juice category indicates a considerable improvement in fit of the observed aggregate sales using the
discrete/continuous model.
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1. Introduction and Background
Recent work in marketing with aggregate store and
chain level data has increasingly resorted to the logit
demand system (Besanko et al. 1998, Sudhir 2001).
Unlike traditional log-log or AIDS models, the logit
is parsimonious and is thus attractive for categories
with a large number of differentiated products. How-
ever, the logit formulation (and other discrete choice
models or DCMs) makes the implicit assumption of
single-unit purchases by consumers and could suf-
fer from a misspecification problem if multiple-unit
purchases are frequent. To understand the source of
misspecification one must examine the derivation of
the aggregate demand system. Since consumers are
constrained to purchase a single unit of their cho-
sen alternative, the market share of a given product
is obtained by integrating the heterogeneity distribu-
tion over the mass of consumers who are expected
to choose that product. Parameter estimation then
proceeds by matching observed market shares to the
model-predicted market shares (c.f., Berry et al. 1995).
If individual consumers purchase multiple units,
however, simply integrating the product-choice prob-
abilities over the distribution of heterogeneity will not

give the correct product market-shares. Rather, one
must integrate the brand and quantity choices over the
distribution of heterogeneity.1 Ignoring the quantity
choices leads to a misspecified demand system, which
could generate incorrect sales forecasts. From a more
managerial perspective, the model may also gener-
ate incorrect estimates of the brand-share elasticities,
which would generate misleading recommendations
for category pricing and margin decisions.2

When household data are available, the litera-
ture has proposed various models that accommo-
date purchase quantities within the context of the
DCM (e.g., Krishnamurthi and Raj 1988, Chiang 1991,

1 An exception would be the case in which consumers’ quantity
choices are independent of brand-choice decisions, and the quantity
decision does not depend on prices and other marketing variables
at the time of purchase. Both are unlikely to be the case, and are
strong assumptions to impose a priori.
2 If households are actually stocking up when prices are low, then
ignoring this can result in overstating the long-run effect of prices
on sales, leading to overstated own price elasticities. This requires a
dynamic model of consumer demand (Erdem et al. 2003), for which
individual-level data are better suited. We ignore this issue at least
for the purposes of this paper.
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Chintagunta 1993, Dillon and Gupta 1996, Arora
et al. 1998, Mehta et al. 1998).3 While individual-level
data are preferred, in many instances such disaggre-
gate information may not be available. The wider
availability of aggregate data, at the store, chain,
or market-level necessitates the development of cor-
responding aggregate models. We therefore derive
the corresponding aggregate demand system to the
individual-level choice and quantity models of the
type used by Chiang (1991) and Chintagunta (1993).
These models approximate the quantity choice by
assuming products are divisible; although the approx-
imation has been found to provide reasonable pre-
dictive fit of individual demand. Similar to the logit
model, this approach retains the link to consumer the-
ory, and at the same time avoids the specification bias
of the logit. In our implementation, we assume that
variation in quantity choices reflects variation in con-
sumption. We do not model the potential dynamics
that arise when consumers stock-pile in anticipation
of future price increases. While advances have been
made in addressing such dynamics in the context of
household data (Erdem et al. 2003, Hendel and Nevo
2003), incorporating such sophisticated choice behav-
ior at the aggregate level is beyond the scope of the
current analysis.
We show how the structural parameters of the

derived demand system can be estimated with readily
available aggregate store-level data. Our specification
allows us to control for the role of unobserved het-
erogeneity in consumer tastes as well as the potential
endogeneity of prices, both of which could bias our
parameter estimates. The endogeneity of prices results
from the presence of unobserved brand characteristics
that could influence consumer choices and that could
correlate with prices (Besanko et al. 1998). We control
for this problem using an instrumental variables pro-
cedure similar in spirit to the approach used for the
logit demand system (Berry et al. 1995). Specifically,
we propose a modified version of the contraction-
mapping found in Berry et al. (1995) to “invert” the
mean utility out of the model. The mean utilities are
then used to construct moment conditions that form
the basis of a method of simulated moments estima-
tion procedure.
We conduct several simulation experiments to show

the proposed model’s parameters are identified and
that the specification is more robust to quantity
choice behavior than the typical logit demand sys-
tem. First, we simulate data from the proposed dis-
crete/continuous demand system and we find we are

3 A separate literature has explored the more sophisticated case
when consumers purchase assortments consisting of multiple
brands and multiple unit quantities (Dubé 2004, Kim et al. 2002).

able to recover the structural parameters fairly accu-
rately. In contrast, fitting a logit model to such data
not only fails to recover the structural parameters, it
also provides incorrect estimates of the price elastic-
ities. Hence, the logit does not appear to be a good
“approximation” of demand when quantity choices
matter. We next simulate data from the logit demand
system. In this case, we find that the logit model, as
expected, recovers structural parameters and provides
reasonable estimates of price elasticities. At the same
time, our proposed discrete/continuous demand sys-
tem also recovers comparable estimates of the price
elasticities. We conclude that our proposed approach
serves as a more robust demand specification for
packaged-good categories as it can accommodate sub-
stitution patterns across a wider scope of quantity
choice behaviors.
The proposed model is estimated using weekly

refrigerated orange juice data for 30 stores from a
large Chicago supermarket chain. We compare the
results from our proposed model (purchase incidence,
brand choice, and quantity model that accounts for
primary and secondary demand effects) with those
from a logit (purchase incidence and brand-choice-
only model). We begin by using a category pricing
model to compute margins for each demand speci-
fication. Since wholesale prices are observed in our
data, we know the true retail margins for the brands
in the product category. We test which of the demand
models better predicts the true observed margins in
the data. We find that the proposed model performs
better than the logit model in predicting the observed
margins both in and out of sample.
We then contrast the two models’ substantive impli-

cations in terms of price elasticities. We find that
the elasticity estimates from the proposed model are
significantly lower than those of the logit. The logit
predicts conditional purchase elasticities (i.e., brand-
switching effects) about 56% higher and category pur-
chase probabilities (i.e., category expansion effects)
about 82% higher than our proposed model on aver-
age. Both these effects are consequences of the single-
unit assumption. We then decompose price effects
into primary (purchase incidence/quantity) and sec-
ondary (brand-switching) demand effects using an
elasticity-based decomposition (Bell et al. 1999) and
a unit sales-based decomposition (van Heerde et al.
2003). This comparison provides some external valid-
ity to our approach since our results, based on
aggregate data, are consistent with those reported
in previous research, using household data. While
the use of aggregate data is similar to van Heerde
et al. (2004), our model formulation allows us to
derive a formal decomposition of the price elastic-
ity of demand. Next, we use the two models to pre-
dict the impact of a hypothetical 30 cent price cut
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on the store brand, potentially to generate new trials.
Since the logit model a priori constrains consumers to
single-unit purchases, it predicts a much higher cate-
gory expansion effect than the proposed model. Taken
together, these results favor our proposed model in
capturing the true nature of demand in this category.

2. Model Formulation
Our main objective is to derive an aggregate demand
system that provides flexible substitution patterns
between brands while still allowing for both primary
and secondary demand considerations at the con-
sumer level. We begin this section with the derivation
of such a consumer-level model. Then, we derive the
corresponding aggregate demand system.

2.1. Consumer-Level Model
In this section, we outline the consumer-level mod-
els used by Chiang (1991) and Chintagunta (1993),
which are based on that of Hanemann (1984). In the
following section, we derive the corresponding aggre-
gate demand system. A utility-maximizing consumer
chooses one (and only one) of the J brands from a
product category in store s during week t. The con-
sumer may purchase a variable quantity of the chosen
brand. The consumer may also choose not to buy any
of the products, in which case the entire shopping
budget is allocated to a numeraire capturing expendi-
tures on other items in the store outside the category
of interest.
Formally, consumer i chooses the utility-maxi-

mizing bundle, subject to a budget constraint:

max
xi1st �����xiJst

u=u∗
( J∑
j=1


ijstxijst�
izstzist

)

s�t
J∑

j=1
pjstxijst+zist=yist� xijst≥0� zist >0�

(1)

where xijst is the quantity purchased of brand j �j =
1� � � � � J �, 
ijst is the perceived quality-index of brand j
by consumer i, zist is the numeraire good, 
izst is con-
sumer i’s perceived quality index of the outside good,
pjst is the price for brand j faced by the consumer
in store s in week t, yist is the total expenditure out-
lay by the consumer. The linear subutility over the J
brands ensures that only a single alternative is chosen.
Analogous to Chiang (1991) and Chintagunta (1993),
we assume the following functional form for the per-
ceived quality index of each brand and the outside
good:


ijst = exp
[
1
�s

��ijst +�istdjst + �jst + �ijst�

]
�


izst = exp��izst/�s��

(2)

Here �s is a store-specific scale that shifts the per-
ceived quality of brands and the outside good across
stores; �ijst is the intrinsic taste for brand j for a
consumer i in store-week st; and djst is a deal vari-
able that indicates an in-store display for brand j
in store-week st with corresponding consumer sensi-
tivity parameter �ist . The random disturbances, �ijst
and �izst , are consumer- and alternative-specific unob-
served factors that affect the consumer’s valuation of
brand j and the outside alternative in store-week
st respectively. We assume the unobserved com-
ponents of the perceived qualities are independent
and identically distributed extreme value such that
�ist = ��i1st� � � � � �iJst�∼ EV�0��� and �izst ∼ EV�D′

s����,
where Ds is a vector of demographic variables spe-
cific to store s, and � is a vector of parameters to be
estimated.4 By allowing store demographics to affect
the distribution of the perceived quality of the out-
side good, we allow the relative attraction of purchas-
ing in the category to vary across stores. In contrast
to previous work with this model, we also include
the term �jst . The error component � controls for
additional unobserved (to the researcher) character-
istics specific to brand j and store-week st, such as
shelf-space allocation and positioning, that influence
consumer choices. In the estimation section we dis-
cuss the econometric challenges that arise if this term
is correlated with marketing variables, such as shelf
prices.
Finally, as in Chiang (1991), we assume the indi-

rect utility function corresponding to (1) has the flex-
ible Homothetic Indirect TransLog (HITL) form. The
solution to (1) implies that the indirect utility is a func-
tion of the expenditure outlay, yst , and the “quality-
weighted” prices of the chosen brand, pjst/
ijst , and
the numeriare good, 1/
izst . Using Roy’s identity, the
demand function (conditional on category purchase,
Iist = 1, and choice of brand j , Cijst = 1) corresponding
to the HITL is:

xijst
(
pjst�
ijst�
izst�yst �Cijst=1�Iist=1

)
= �yst/pjst�

[
�1−�3 ln�pjst/
ijst�+�3 ln�1/
izst�

]
� (3)

where �1 and �3 are parameters of the HITL indirect
utility function (for further details on the HITL, see
Pollak and Wales 1992). These assumptions give rise
to the expected conditional demands

E��xijst� =
∫
j chosen

xijst�pjst�
ijst�
izst�yst�Cijst=1�Iist=1�d�ist

= − 1
�s/��3

yst
pjst

[
ln�P�Iist=0�!
P�Iist=1�

]
(4)

4 Note that for a given store, the demographic variables will be
the same for all weeks. Additionally, in our data, we have access
to only the mean demographics for each store—this implies that
for a given store, the demographic variables will be the same for
all individuals in each week. Hence we drop the subscripts i for
individual and t for week for the demographic variables.
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and corresponding choice probabilities

Pr�Iist = 1� =
J∑

j=1
eVijst

/(
1+

J∑
j=1

eVijst
)
�

Pr�Cijst = 1� Iist = 1� = eVijst
/(

1+
J∑

j=1
eVijst

)
�

(5)

where Vijst = $�ijst + �1�s/�3 + �istdjst − �s ln�pjst� −
D′

s� + �jst%1/� (derivations of all equations are avail-
able from the authors). Equations 4 and 5 describe the
quantity and incidence/brand choice components of
the model, both of which are derived from the same
underlying utility maximization problem (1).
To control for heterogeneity across consumers shop-

ping during store-week st, we include random coef-
ficients in the perceived quality function, 
ijst (Arora
et al. 1998). To control for differences in mean effects
across stores, we interact taste parameters with store-
specific demographic variables, D∗

s (note that D
∗
s could

contain the same or different demographic variables
as Ds). We account for heterogeneity in the following
way:5

��i1st� � � � � �ijst� � � � � �iJst�
′

= ��1� � � � � �j� � � � � �J �
′ +L'ist (6.1)

such that 'ist ∼MVN�0� IJX1� and L′L=+JXJ , and,

�ist = �+,d-ist� -ist ∼N�0�1�

�s = 	�+D∗
s .

(6.2)

This formulation of the demand model differs from
previous work in two ways. First, we include the error
component � to control for unobserved attributes. We
also include interactions of preferences with demo-
graphics to control for differences in demand across
stores.

2.2. Aggregate Demand
We now derive the aggregate demand system corre-
sponding to the consumer model of the previous sec-
tion. We define the potential market size as the mass
of consumers who shop in the store s during week t,
Nst . For the current analysis, we assume that Nst is
exogenous. Hence, variation in prices of the various
orange juice SKUs are assumed to have no impact on
total store traffic, only on category size (share of store
traffic that purchases in the category). This assump-
tion could be problematic in store traffic-generating
categories such as carbonated soft drinks.6

5 Though not shown, it is straightforward to include store-
demographics effects for the brand-intercepts and for the effects of
the brand-attributes (e.g., Chintagunta et al. 2003).
6 Although not reported, we found that observed variation in store
traffic does not co-vary significantly with an orange juice price
index, whereas the former does correlate with indices from other
categories.

To derive aggregate demand for brand j , we inte-
grate over the set of consumers choosing brand j :

Qjst =Nst

∫
$Pr�Cijst = 1� Iist = 1�E��xist�%0�1�21� (7)

where 1= �'�-�′ and 0�·� denote the pdf of a stan-
dard multivariate normal distribution. The corres-
ponding average quantity purchased per customer,
Q̃jst ≡Qjst/Nst , is obtained from (7):

Q̃jst =
∫
$Pr�Cijst = 1� Iist = 1�E��xist�%0�1�21 (8)

To assess the importance of modeling purchase
quantity considerations, we compare the above aggre-
gate demand system with the logit aggregate demand
system, where the latter does not account for quan-
tity choices. In the case of the logit demand system,
the average quantity purchased per customer (i.e., the
market share) can be written as:

Q̃jst =
∫
Pr�Cijst = 1� Iit = 1�0�1�21� (9)

Essentially, (9) is equivalent to imposing E��xist� = 1
in (8). Empirically, we can compare parameter esti-
mates and marginal effects under (8) and (9) to mea-
sure the role of purchase quantity considerations.

3. Model Estimation
We now outline the method-of-simulated-moments
(MSM) procedure that produces consistent esti-
mates of the model parameters. The procedure also
resolves a potential endogeneity problem inherent in
the model due to the possible correlation between
observed prices and characteristics specific to the
brands in each store-week that are unobserved to the
researcher, �jst .
Combining equations (4), (5), (6), and (8), we re-

write the aggregate demand for brand j as:

Q̃jst�3� =
∫ yst

�spjst

eVijst∑J
k=1 eVikst

× ln
[
1+

J∑
k=1

eVikst
]
0�1�21� (10)

where

Vijst =
[
��j+ 	��1/�3�−�s ln�pjst�+djst�

+D∗
s .�1/�3−D′

s�+�jst
] 1
�

+[
L'ist+djst,d-ist

] 1
�

and 3 is a vector containing all the model parameters.
In principle, one could estimate (10) using maximum
likelihood, where � is the econometric error term. The
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concern is that the error term captures unobserved
(to the researcher) demand-shifting factors that may
be observed by the retailer. If the retailer accounts
for these factors when setting prices, then � would
be correlated with prices, which would in turn gen-
erate an endogeneity bias. This type of bias has been
discussed and documented in the context of similar
weekly retail data (Besanko et al. 1998, Sudhir 2001,
Chintagunta et al. 2003). To resolve the endogeneity
problem, we rewrite Vijst in (10) as follows:

Q̃jst�5�6� =
∫ yst

�spjst

e5jst+7ijst∑J
k=1 e5kst+7ikst

· ln
[
1+

J∑
k=1

e5kst+7ikst

]
dF �7�� (11)

where 5jst = $��j + 	��1/�3� − �s ln�pjst� + djst� +
D∗

s .�1/�3 −D′
s� + �jst%�1/�� is the component of Vijst

that is common across consumers in store-week st,
and 7ijst = �L'ist + djst,d-ist��1/�� is the consumer-
specific component. Due to linearity, we can write
5jst as 5jst = XjstB − �s ln�pjst�+ �jst , where B contains
an intercept term, �j/� + 	��1/�3�; a mean sensitiv-
ity to display, �/�; and sensitivities to demographic
variables. The scale � cannot be recovered separately
and is normalized to 1. In addition, we normalize �3
to 1 since it cannot be identified separately from �1.
The term �s �= 	� + D∗

s .� is henceforth referred to
as the price sensitivity for store s. The consumer-
specific term, 7ijst , depends on the remaining param-
eters, L�,d. Denote the entire set of parameters to be
estimated as 6= �B� 	��.�L�,d!.
Analogous to Berry (1994), we invert (11) to recover

the vector 5jst�6�. In the appendix we prove that (11)
is indeed an invertible function of 5jst . Hence, for a
given set of model parameters and given values for
�jst , there exists a unique vector 5jst such that (11)
holds identically (i.e., qjst = Q̃jst�5�6��. To invert 5jst
out of the model, we use a modified version of the
contraction-mapping proposed by Berry et al. (1995)
for the logit demand system (in the appendix, we
prove that the contraction-mapping is valid in the
context of our demand specification). We denote the
average quantity per customer in the aggregate data
as qjst . Now define the function g�·�< �J →�J as:

g�5�= 5+ ln�q�− ln$Q̃�5�%� (12)

For each guess of the parameters 6, we iterate on (12)
to recover the unique vector 5jst�6� that solves (11)
across all store-weeks. Intuitively, we calibrate val-
ues of 5jst�6� that exactly fit the predicted Q̃jst to the
observed qjst in the data. To evaluate the multidimen-
sional integrals in (11), we use Monte Carlo simula-
tion. Thus, the inversion procedure described above

matches the simulated Q̃jst to the observed average
qjst in the data. Simulation was carried out using 100
draws.7

Using our values of 5jst�6�, we construct moment
conditions based on �jst = 5jst�6�− XjstB + �s ln�pjst�,
where we assume E$�jstXjst � Xjst%= 0. The endogene-
ity of prices arises if E$� ln�p� � ln�p�% �= 0. Hence, in
addition to Xjst , we need additional instruments, Zjst ,
such that E$�jstZjst � Zjst%= 0. Using these orthogonal-
ity conditions, we can estimate our model parameters
consistently using a standard method of simulated
moments procedure (Pakes and Pollard 1989). Further
technical details of the procedure are provided in the
appendix.

3.1. Simulation Studies
We conduct several simulation experiments to illus-
trate the identification of our proposed model’s
parameters and to demonstrate its robustness across
alternative quantity choice behavior at the individ-
ual level. For now we summarize our findings, refer-
ring the reader to the appendix for complete results
and details. First, we simulate data from the proposed
discrete/continuous demand system and find we are
able to recover the structural parameters fairly accu-
rately. In contrast, fitting a logit model to such data
not only fails to recover the structural parameters,
it also provides incorrect estimates of the price elas-
ticities. In particular, conditional on purchase, when
quantities at the individual-level range from 2–4 units,
the logit overstates aggregate brand-choice elasticities
by about 44%, and aggregate category purchase elas-
ticities by about 31% on average. By construction, all
variation in market-shares has to reflect changes in
brand-switching or purchase incidence in the logit;
and consequently, it overstates the corresponding
elasticities when the share-variation is also driven by
changes in underlying quantity choices. Hence, the
logit does not appear to be a good “approximation” of
demand when quantity choices matter. We next sim-
ulate data from the logit demand system. In this case,
we find that the logit model, as expected, recovers
structural parameters and provides reasonable esti-
mates of price elasticities. At the same time, our
proposed discrete/continuous demand system also
recovers comparable estimates of the price elastici-
ties. Finally, we simulate data from a household level
model where quantity choices are discrete. A poten-
tial limitation of our proposed model is that quanti-
ties are treated as divisible and, hence, we wish to see
if the continuous approximation of quantity choices
can still provide meaningful demand estimates. We
use a brand-choice-then-quantity model in which the

7 We found little impact increasing the number beyond 100 to 150
or 200 draws.
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probability of purchase is given by a logit and the
discrete quantity chosen is given by a truncated
Poisson. Again, we find that our proposed model pro-
vides fairly reasonable estimates of the underlying
choice probabilities and conditional quantities. Hence,
we conclude that our proposed approach provides
a more robust demand specification for packaged-
good categories as it can accommodate substitution
patterns across a wider scope of quantity choice
behaviors.

4. Data and Results
4.1. Data
We use aggregate store-level data for the refrigerated
orange juice category obtained from the Dominick’s
Finer Foods (DFF) database at the University of
Chicago. The IRI factbook documents that in this
category consumers typically purchase 5.47 pints
(109.4 oz.) of a single brand of refrigerated juice on
a given purchase occasion. Using the most common
pack size in this category, 64 oz., this corresponds to
an average demand of 1.71 units per purchase occa-
sion (in the Dominick’s dataset, products with pack-
size of 64 oz. had around 88% of the market share; see
Table 3). Using a separate household database, from
a different market (Denver), we find that, conditional
on the purchase of refrigerated orange juice, 99% of
the trips involve the purchase of a single SKU, but
over 20% of the trips involve the purchase of multiple
units of an SKU.
Our data consist of weekly sales, prices, displays,

and profit margins at the UPC-level along with total
weekly store traffic for 30 randomly-selected stores
during the 52-week period of 1992. We also use the
corresponding mean demographic variables for each
store. Descriptions of these demographic variables
can be found in Chintagunta et al. (2003). We focus
our analysis on the top 7 SKUs (we combined UPCs
of the same brand and package size whenever the cor-
relation in their prices exceeds 0.8 across stores and
weeks). In Table 1, we present descriptive statistics
of these data. Since our data contain two different
pack-sizes, 64 oz. and 96 oz., we include alternative
specific intercepts in the model to control for volume
differences. Hence, in predicting quantity choices, the
model controls for the difference in volume between,
for instance, 2 units of a 64-oz. product versus 2
units of a 96-oz. product (Allenby et al. 2004). As
in Chintagunta et al. (2003), we use weekly whole-
sale prices as additional instruments for shelf prices.
The motivation for using wholesale prices as instru-
ments comes from the interpretation of �sjt as store-
specific aggregate shocks (i.e., aggregate shocks for
all consumers shopping in a given store). We refer

Table 1 Product-Level Averages Across Store-Weeks

Brand Size (oz.) Share (%) Price Cost Display

Minute Maid 64 21�25 $2.25 $1.69 0.11
Minute Maid 96 4�35 $4.11 $2.98 0.03
Dominick’s 64 22�71 $1.65 $1.15 0.01
Tropicana Prm 64 21�87 $2.67 $1.88 0.09
Tropicana SB 64 17�69 $2.38 $1.62 0.05
Tropicana Prm 96 8�12 $4.52 $3.26 0.07
Florida 96 3�97 $2.18 $1.48 0.04

the reader to Chintagunta et al. (2003) for a discus-
sion. A limitation of this approach is that it would
not resolve endogeneity arising from more macroeco-
nomic shocks, such as unobserved (to the researcher)
television advertising, which would most likely be
common across all stores and, moreover, would be
correlated with wholesale prices. The R2 for the first-
stage regression of prices on the instruments is 0.728.8

We use weekly store-traffic as the potential market
size for store s during week t. Finally, we operational-
ize yst by dividing the total dollar sales for the grocery
section in a store-week by the corresponding level of
store-traffic.
In our raw data, we do observe patterns consistent

with brand-switching as well as purchase accelera-
tion. In Figure 1, we plot the unit sales and prices
of Tropicana Premium (dotted line with asterisk)
against all other brands (solid line) in our sample
Store 2. The bottom panel shows the per-unit price
of Tropicana Premium in Store 2. During weeks 8
and 9, we observe quantity changes consistent with
brand switching. The price of Tropicana Premium
dropped from $3.2 to $2.0 and its sales increased by
around 700 units, while those of all the other brands
dropped by around 1000 units. During other promo-
tion weeks, however, we see similar price-cut induced
sales increases for Tropicana without any effect on
sales of other brands (e.g., weeks 24 and 25), possibly
due to either category expansion or purchase acceler-
ation (Bell et al. 1999, van Heerde et al. 2003).

4.2. Results
We now report the results of estimation of the
proposed model. Preliminary analysis indicates that
ignoring either heterogeneity or endogeneity results
in a significantly lower magnitude for the estimated
price parameter, a finding consistent with previous lit-
erature. We only present the results from the model

8 The full set of instruments includes all demand-shifting variables
other than price along with wholesale prices. A potential concern is
that some of the marketing variables, displays, are also correlated
with �. Previous research has routinely rejected the hypothesis that
displays correlate with � and, hence, are invalid instruments (e.g.,
Sudhir 2001, Chintagunta et al. 2003). A Hausman test supports the
exogeneity assumption of displays for our data.
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Figure 1 Unit Sales for Tropicana Premium and All Other Brands (Top) and Prices for Tropicana Premium (Bottom), in Store 2
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that allows for heterogeneity and accounts for price
endogeneity (Table 2). To allow demand to vary
across stores, we include demographic variables as
follows:

�s = 	�+ .ethnicethnics + .hval1500hval150s�

Ds� = �drvtmdrvtms + �age60age60s + �hhlargehhlarges�

where �s is the price parameter. An unrestricted
variance-covariance matrix for the intercepts, +, is
estimated.
Looking at the results in Table 2, we find that con-

sumers have a higher preference for Tropicana Sea-
son’s Best and Tropicana Premium versus Minute
Maid and the store brand. As expected, displays
have a significant positive effect on the utilities of
all the inside goods, and prices have a significant
negative effect. We do not find much unobserved
heterogeneity in the effects of display across stores
�,d = 0�103�. Heterogeneity in the price effect is cap-
tured by interacting the (log of the) price variable
with store demographics. We find that a higher pro-
portion of African-American or Hispanic families in
the store area increases the mean price sensitivity of
consumers in that store. This is as expected, since
African-American and Hispanic-dominated areas in
our data tend to have lower incomes on average. We
find that consumers are less price sensitive in store
areas with a higher proportion of households with
properties valued greater than $150,000. Although not
reported, we find evidence of substantial differences
in the mean price sensitivity across stores, driven
mainly by the significant demographic effects and
interactions. This finding is consistent with previous

research using the DFF data (Hoch et al. 1995 and
Chintagunta et al. 2003).
In Table 3, we present the predicted average quan-

tity per customer conditional on purchase, E�x̄ijst�pjst�

ijst� 
izst� yst �Cijst = 1� Iist = 1�, across all store-weeks.
The results indicate that, on average, consumers tend
to purchase more units of the store brand than the
other brands. This result arises since, conditional

Table 2 Parameter Estimates (with Heterogeneity)

Standard deviations of
intercepts

Parameter t-Stat Parameter t-Stat

Minute Maid 64 oz. −19�278 −2�733 8�145 3�159
Minute Maid 96 oz. −5�676 −5�723 2�905 5�831
Dominick’s 64 oz. −14�250 −3�173 7�474 3�784
Tropicana Prm 64 oz. −7�491 −5�331 5�251 7�152
Tropicana SB 64 oz. −5�207 −6�316 2�320 3�483
Tropicana Prm 96 oz. −4�530 −4�413 1�806 2�844
Florida 96 oz. −5�684 −9�016
-Log(price) 2�336 13�839
Display 0�387 3�626
-Log(price)∗ethnic 4�165 5�083
-Log(price)∗hval150 −1�363 −6�175
Ethnic 8�750 6�505
Hval150 −1�669 −3�981
Drvtm −0�051 −2�514
Age60 1�367 3�396
Hhlarge 0�013 0�015
�d 0�103 0�094

GMM objective value 395.614

Notes. Parameters represent Vjst in Equation 14; total parameters = 45;
observations = 10,682 (product-store-week combinations); full variance-
covariance matrix for intercepts is estimated; t-statistics of intercept het-
erogeneity terms were calculated using 500 bootstrap draws of parameter
vector.
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Table 3 Predicted Expected Quantities Purchased
Across Store-Weeks

Product Mean Std. deviation

Minute Maid 64 oz. 1.715 0.625
Minute Maid 96 oz. 0.932 0.323
Dominick’s 64 oz. 2.352 0.920
Tropicana Prm 64 oz. 1.450 0.555
Tropicana SB 64 oz. 1.651 0.670
Tropicana Prm 96 oz. 0.839 0.280
Florida 96 oz. 1.751 0.633

on brand-choice, the predicted quantity purchased is
proportional to the ratio expenditure/price. Since the
store brand has the lowest price per unit ($1.65 on
average), the model predicts that consumers buy it in
the highest quantities.

5. Model Implications
We now discuss the substantive implications of the
model and compare it along several dimensions to
the popular random coefficients logit demand system,
which assumes single-unit purchases at the consumer
level. First, we compare the two specifications in
their ability to predict the observed markups (price−
wholesale costs) in the data, both in and out-of-
sample. Here we show how we can test model supe-
riority in terms of predictive fit. Subsequently, we
compare the models in terms of their predictions for
price elasticities of demand and purchase incidence.
We also compare their predictions for a hypothetical
price cut. Although not reported, we also found con-
siderable improvement in fit of our proposed model
relative to a log-log demand specification.

5.1. Margin Predictions
We propose a simple statistical test for the relative
superiority of the proposed model versus the logit.
The wholesale prices in the database enable us to
compute the true retail margins across the store-
weeks in our sample. For each of the demand mod-
els, we then use a category pricing model to obtain
predicted margins. The category pricing model has
been found to provide a reasonable approximation of
pricing in supermarket categories (Chintagunta et al.
2003). In Table 4, we find the model that accounts for
primary and secondary demand effects provides pre-
dicted margins that are more highly-correlated with
the true margins and are, on average, more accurate.
Following Chintagunta et al. (2003), we also test

which model provides a better fit of the observed
margins using the following minimum distance
metric:

min
?

�margin−?�′@̂�margin−?��

The term ? is the estimated margin and @̂ is the
covariance matrix of the observed margins. The min-
imum distance criterion corresponding to both mod-
els are presented in the last row of Table 4. The fit
for the single-unit logit model is very similar to that
found by Chintagunta et al. (2003) using DFF data for
the same category. However, the proposed model pro-
vides a better fit according to the minimum distance
criterion. For robustness, we repeat the minimum dis-
tance procedure using margins from the 53 remaining
stores, not used at the demand estimation stage. We
compute the margins for each brand in each of 2,724
store-weeks from our hold-out sample.9 The results
are presented in Table 5. We see that the proposed
model once again performs better than the single-unit
model out-of-sample.

5.2. Price Elasticities
In Tables 6 and 7 we present the estimated own and
cross-price elasticities for the proposed and the logit
models respectively. For the former, we decompose
the elasticity into an unconditional brand choice elas-
ticity and an expected conditional quantity elasticity.
The unconditional brand choice elasticity is computed
as the mean of

�pjpk = pkst

(∫
2P�Cijst = 1� Iist = 1�/2pkst0�1�21

)
/(∫

P�Cijst = 1� Iist = 1�0�1�21
)
�

and the expected conditional quantity elasticity is
computed as the mean of:

�qjpj = pjst

(∫
2E��xijst �Cijst = 1� Iist = 1�/2pjst0�1� 21

)
/(∫

E��xijst �Cijst = 1� Iist = 1�0�1�21
)

across all store-weeks in the sample. As in the case of
a logit model, the inclusion of heterogeneity provides
more flexible substitution patterns.10

The net elasticity estimates, the sum of brand-
choice and quantity elasticities, from the proposed
model are presented in Table 6a. We find that Minute
Maid 64 oz. has the least price-elastic demand, while
Florida Orange has the most price-elastic demand.
Consistent with previous studies (Blattberg and
Wisniewski 1989, Allenby and Rossi 1991), we find

9 In predicting margins out-of-sample, it is important to control for
the structural error �jst . From our estimation, for each week, we
have estimates of �jst for the 30 stores in our sample. When comput-
ing margins for a store-week out-of-sample, we integrate over the
empirical distribution of � across the 30 DFF stores for that week.
10 With no heterogeneity, the own-price elasticities are roughly pro-
portional to average unconditional quantities, and cross-price elas-
ticities are independent of own brand prices/attributes.
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Table 4 Sample Prediction of Margins

Logit model Proposed model

Conditional Average Average True % Predicted % Correlations of true Predicted % Correlations of true
Brand Size (oz.) share (%) price cost margins margins1 and pred: margin2 margins and pred: margins

Minute Maid 64 21�25 $2.25 $1.69 23.83 50.90 0.3688 41.99 0.5757
Minute Maid 96 4�35 $4.11 $2.98 26.42 38.43 0.4583 33.60 0.6214
Dominick’s 64 22�71 $1.65 $1.15 28.41 49.93 0.3794 40.56 0.6360
Tropicana Prm 64 21�87 $2.67 $1.88 28.41 53.84 0.3432 36.00 0.5737
Tropicana SB 64 17�69 $2.38 $1.62 30.39 52.13 0.4223 34.46 0.6954
Tropicana Prm 96 8�12 $4.52 $3.26 27.20 51.70 0.2320 36.47 0.5986
Florida 96 3�97 $2.18 $1.48 31.80 31.94 0.4775 32.44 0.5021

Minimum distance criterion 1.3068 0.2991

1 “% margin”= 100 ∗ �p− c�/p.
2 “margin”= �p− c�.

Table 5 Out of Sample Prediction of Margins

Logit model Proposed model

Conditional Average Average True % Predicted % Correlations of true Predicted % Correlations of true
Brand Size (oz.) share (%) price cost margins margins and pred: margin margins and pred: margins

Minute Maid 64 21�16 $2.23 $1.69 23.61 48.87 0.2403 49.53 0.3894
Minute Maid 96 4�02 $4.08 $2.99 26.03 36.98 0.2022 31.48 0.3621
Dominick’s 64 25�33 $1.64 $1.15 28.03 48.26 0.2885 45.33 0.5237
Tropicana Prm 64 19�75 $2.66 $1.88 27.95 51.73 0.2439 35.81 0.4385
Tropicana SB 64 17�75 $2.36 $1.62 29.86 49.99 0.3088 31.67 0.5636
Tropicana Prm 96 7�47 $4.50 $3.26 26.94 55.18 0.0658 34.42 0.3355
Florida 96 4�53 $2.17 $1.48 31.41 29.30 0.2693 29.16 0.3053

Minimum distance criterion 1.2975 0.3083

Table 6(a) Expected Price-Elasticities of Demand (Across Stores-Weeks) for the Proposed Model

On the demand for:Effect of change
in price of: MM64 MM96 Dom64 TRPrm64 TRSB64 TRPrm96 FLR

MM64 −2�6274∗ 0�0059 0�3610∗ 0�0058 0�0535 0�1310∗ 0�0007
MM96 0�0033 −3�0632∗ 0�0088 0�0122 0�0073 0�0063 0�0053
Dom64 0�3480∗ 0�0145 −2�7468∗ 0�0022 0�0340 0�0637∗ 0�0013
TRPrm64 0�0091 0�0354∗ 0�0034 −2�7503∗ 0�0341 0�0396∗ 0�0078
TRSB64 0�1010∗ 0�0208 0�0698 0�0355 −3�1396∗ 0�1190∗ 0�0051
TRPrm96 0�1450∗ 0�0113∗ 0�0783∗ 0�0274∗ 0�0783∗ −3�0359∗ 0�0015
FLR 0�0003 0�0034∗ 0�0005 0�0017 0�0011 0�0006 −3�1920∗

∗ Statistically significantly different from zero at the 10% level.

Table 6(b) Expected Unconditional Choice Price Elasticities (Across Stores-Weeks) for the Proposed Model

On the unconditional probability of choice of:
Effect of change No purchase
in price of: MM64 MM96 Dom64 TRPrm64 TRSB64 TRPrm96 FLR probability

MM64 −1�6200 0�0059 0�3610 0�0058 0�0535 0�1310 0�0007 0�0050
MM96 0�0033 −2�0600 0�0088 0�0122 0�0073 0�0063 0�0053 0�0057
Dom64 0�3480 0�0145 −1�7400 0�0022 0�0340 0�0637 0�0013 0�0056
TRPrm64 0�0091 0�0354 0�0034 −1�7400 0�0341 0�0396 0�0078 0�0133
TRSB64 0�1010 0�0208 0�0698 0�0355 −2�1300 0�1190 0�0051 0�0157
TRPrm96 0�1450 0�0113 0�0783 0�0274 0�0783 −2�0300 0�0015 0�0086
FLR 0�0003 0�0034 0�0005 0�0017 0�0011 0�0006 −2�1900 0�0040
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Table 6(c) Expected Conditional Quantity Elas-
ticities (Across Stores and Weeks)
for the Proposed Model

MM64 −1�0074
MM96 −1�0032
Dom64 −1�0068
TRPrm64 −1�0103
TRSB64 −1�0096
TRPrm96 −1�0059
FLR −1�0020

evidence for asymmetric switching between national
and store brands, with the national brands gaining a
bit more share from the store brand from its price-
cuts, than vice versa. We also observe high cross-price
elasticities for different pack-sizes of the same brand.
The patterns in the unconditional choice elasticities
(Table 6b) reflect those in the demand elasticities
(Table 6a). Similar to previous research with house-
hold data, we find quantity elasticities in Table 6c
close to 1 (Chiang 1991 and Chintagunta 1993).11

The demand elasticities for the logit model are pre-
sented in Table 7. Under the single-unit purchase
assumption, any change in a brand’s market share
must reflect either brand-switching or purchase inci-
dence. Consequently, we expect the model would
overstate the unconditional brand-choice probability if
consumers do indeed respond to price changes by
changing their quantity choices. Comparing Tables 6b
and 7, we observe that the unconditional choice proba-
bility elasticities for the logit model are systematically
higher than those of the proposed model. Although
not reported, mean conditional brand choice elastici-
ties differ by roughly 56%. Despite similarities in the
mean own-price elasticities of demand for the two
models, we find considerable differences when we
look at individual store-weeks. We find that own-price
elasticities from the two models can differ by as much
as 50% in a given store-week.
To test whether the total demand elasticities from

the two models (elasticities in Tables 6a and 7) are sig-
nificantly different, we use the Hotelling 2-sample T 2

test (Morrisson 1990, Gupta et al. 1996). For this pur-
pose, we first generate 500 draws from the asymptotic
distribution of the parameters of both the models.
For each draw we computed the 49X1 mean demand
elasticity vector (for the seven brands, across store-
weeks) for both models. Let ŴQ denote the empirical
variance-covariance matrix of the 500 bootstrapped
mean demand elasticities for the proposed model;
ŴB denote the empirical variance-covariance matrix

11 The model structure implies that the expected quantity elastic-
ity is: �q

j
pk

= −1 + ∫
�s$Pr�Cijst = 1� Iist = 1�/ln�Pr�Iist = 0�!% ∗ $1 +

ln�Pr�Iist = 0�!Pr�Iist = 0�/Pr�Iist = 1�%0�1�21. Therefore, low uncon-
ditional purchase probabilities, Pr�Cijst = 1� Iist = 1�, imply quantity
elasticities close to 1.

of the 500 bootstrapped mean demand elasticities for
the logit model; and ŴQB denote the pooled variance-
covariance matrix of ŴQ and ŴB. Let n1 and n2 repre-
sent the number of observations of the bootstrapped
elasticities (in this case 500), and let �̂Q and �̂B be
the mean demand elasticity vector computed across
the 500 bootstrapped replications for the two models.
The null hypothesis of no difference between the elas-
ticities from the two models is tested by the following
T 2-statistic:

T 2 = n1n2
n1 +n2

��̂Q − �̂B�
′ŴQB��̂Q − �̂B��

The quantity F = ��n1 +n2 − p− 1�/�n1 +n2 − 2�p�T 2

has an F distribution with degrees of freedom p and
n1+n2−p−1, where p is the order of the elasticity vec-
tors (here p= 49). The computed value of the statistic
is 758.52; the corresponding critical value of F �49�950�
at the 0.01 significance level is 1.55, showing that the
null hypothesis of equal elasticities is strongly rejected.

5.2.1. Primary Versus Secondary Demand De-
compositions. An attractive feature of our speci-
fication is the ability to decompose the price elasticity
of demand and predicted sales into primary (pur-
chase incidence/quantity) and secondary (brand-
switching) demand. In Table 8 we provide both an
elasticity-based decomposition (Bell et al. 1999) and
a unit sales-based decomposition (van Heerde et al.
2003). Under the elasticity-based decomposition, the
primary demand effect is computed as the purchase
incidence and purchase quantity elasticity as a per-
centage of the total demand elasticity, averaged across
all store weeks. Under the unit sales decomposition,
the primary demand effect is computed as the change
in category sales as a percentage of the change in
own-brand sales in response to the price change, aver-
aged across store-weeks.12 Our primary demand com-
ponent accounts for about 35% of total elasticity and
92% of total unit sales. These values lie in the range
reported by Bell et al. 1999 (Table 6) for the elasticity-
based decomposition, and by van Heerde et al. 2003
(Table 4) for the unit sales-based decomposition. Con-
sistent with van Heerde et al. (2003), we find that
the brand-switching component of unit sales is con-
siderably less than the primary demand (purchase
incidence/quantity) component. The comparability of

12 The expressions for the primary (PD) and secondary (SD) unit
sales effects as defined in Equations 8 and 9, Van Heerde et al.
(2003), in the context of the proposed model are:

PDjst =
∫ (

1+�s

[
1−

J∑
k=1

pj

pk

{
Pr�Cikst=1�Iist=1�+ Pr�Cikst=1�Iist=1�

ln$Pr�Iist=0�%

}])
/(

1+�s

[
1−Pr�Cijst= j � Iist=1�− Pr�Cijst=1�Iist=1�

ln$Pr�Iist=0�%

])
d7i

SDjst=1−PDjst �
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Table 7 Expected Price-Elasticities of Demand (Across Stores and Weeks) for the Single-Unit (Logit) Model

On the market share of:
Effect of change No purchase
in price of: MM64 MM96 Dom64 TRPrm64 TRSB64 TRPrm96 FLR probability

MM64 −3�0405∗ 0�1230∗ 0�1850 0�2800∗ 0�2680∗ 0�3400∗ 0�0057 0�0322
MM96 0�0237 −3�1162∗ 0�0143 0�0253 0�0251∗ 0�0373∗ 0�0019 0�0071
Dom64 0�2120∗ 0�0909∗ −3�0413∗ 0�1800∗ 0�2230∗ 0�2250∗ 0�0110 0�0421
TRPrm64 0�2580∗ 0�1260∗ 0�1440∗ −2�7391∗ 0�3110∗ 0�3000∗ 0�0050 0�0272
TRSB64 0�2330∗ 0�1190∗ 0�1710∗ 0�2940∗ −3�0330∗ 0�3190∗ 0�0054 0�0297
TRPrm96 0�1190∗ 0�0664∗ 0�0644∗ 0�1070∗ 0�1230∗ −2�7334∗ 0�0003 0�0072
FLR 0�0011 0�0021 0�0018 0�0009 0�0010 0�0002 −3�2501∗ 0�0092

∗ Statistically significantly different from zero at the 10% level.

Table 8 Elasticity and Unit-Sales Based Decomposition for the Proposed Model

Elasticity based decomposition1 Unit Sales based decomposition2

Brand Size (oz.) Primary (%) Secondary (%) Primary (%) Secondary (%)

Minute Maid 64 38.53 61.47 84.34 15�66
Minute Maid 96 32.94 67.06 96.70 3�30
Dominick’s 64 36.86 63.14 91.50 8�50
Tropicana Prm 64 37.22 62.78 97.29 2�71
Tropicana SB 64 32.66 67.34 95.56 4�44
Tropicana Prm 96 33.42 66.58 82.14 17�86
Florida 96 31.52 68.48 98.68 1�32

Average for category 34.73 65.27 92.31 7�69

Notes. Following Bell et al. (1999), the primary demand elasticity is the purchase incidence+ quantity elasticity, and
the secondary demand elasticity is the conditional brand-choice elasticity.

1 Primary and secondary demand elasticities as percentages of the total demand elasticity (as reported in Bell et al.
1999, Table 5).

2 Primary and secondary unit sales effects as percentages of the total unit sales effect (as defined in Equations 8
and 9, van Heerde et al. 2003).

our results, based on aggregate data, with previous
studies, based on household data, serve as a source
of validation for our approach.

5.3. Category Purchase Probabilities
We now compare the category purchase probabilities
predicted by the proposed model and the logit model.
Since the latter only allows one unit to be purchased
per customer, we expect it would overpredict pur-
chase incidence (the proportion of store trips resulting
in a purchase). Indeed, the mean category purchase
probability across all store-weeks estimated at the
final parameter values for the single-unit model is
0.0691, about twice the corresponding value of 0.0379
for the proposed model. We use the 2-sample T 2 test
described in the previous section to test if the pre-
dicted mean category purchase probabilities across
the 30 stores in our sample are significantly differ-
ent between the two models. The computed value of
the statistic using the 500 bootstrapped values was
2031.44; the corresponding critical value of F �30�969�
at the 0.01 significance level is 1.72, showing that the
null hypothesis of equal category purchase probabili-
ties is strongly rejected.

In Figure 2, we plot the weekly predicted category
purchase probabilities for the two models in our sam-
ple Store 2. In addition to predicting higher purchase
incidence overall, the logit also predicts occasional
large spikes in incidence which seem unrealistic. The

Figure 2 Plot of Predicted Category Purchase Probability Across
Weeks for Store 2
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Figure 3 Plot of Predicted Percent Increase in Unconditional Choice Probabilities and Expected Conditional Quantities Demanded Across All Stores
in Response to a 30-Cent Price Cut of the Store Brand
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proposed model smoothes these spikes by allowing
for changes in quantity choices.

5.4. Measuring the Impact of a Price Cut
We now illustrate the substantive differences of these
two models by simulating the impact of a hypotheti-
cal retail price cut of 30 cents for the store brand. Such
a price cut might be used as an investment to gener-
ate new trials of a product by generating incremen-
tal sales or by stealing share from national brands.
Figure 3 shows the percentage increase in the uncon-
ditional brand-choice probability (left panel) and the
conditional quantity (right panel) of the store brand
across the 30 stores in response to the price cut. As
expected, the logit predicts a much larger degree of
category expansion and brand switching. Looking at
the right panel, we see that the percentage increase in
average conditional quantities demanded in response
to this price cut could be as high as 24% (Store 32),
indicating that quantity effects are not negligible. By
constraining these to be zero a priori, the logit could
potentially present the retailer an overly optimistic
view of his ability to generate new trials.

6. Conclusions
This paper makes three contributions. First, we
present a methodology for estimating the aggregate
demand system corresponding to the models of con-
sumer choice of Chiang (1991) and Chintagunta’s
(1993). This approach provides a parsimonious repre-
sentation of demand, while retaining the link to con-
sumer theory. Moreover, the approach allows one to
recover the structural parameters of the model using
aggregate store-level data. Second, our specification
allows us to control for the role of heterogeneity in
consumer tastes as well as the potential endogene-
ity of prices, both of which could bias our parameter
estimates when not properly accounted for. We pro-
pose a modified inversion procedure similar in spirit

to Berry et al. (1995) to control for the endogeneity.
Third, our empirical results using weekly store-level
data for the refrigerated juice category obtained from
the Dominick’s Finer Foods database indicate that the
model provides reasonable estimates for the average
conditional purchase quantity for this market and cat-
egory. Further, the proposed specification outperforms
the traditional logit model along several dimensions.
We expect the logit model would be a reasonable

demand specification for many categories in which
single-unit purchase behavior is common. However,
our empirical results and simulation experiments
indicate the need for caution in imposing single-
unit purchase behavior in categories for which the
assumption is inappropriate. In particular, misusing
this assumption leads to erroneous results for price
elasticities and category expansion effects. In con-
trast, our proposed approach serves as a more robust
demand specification for packaged-good categories
as it can accommodate substitution patterns across a
wider scope of quantity choice behaviors.
Notwithstanding the paper’s contributions, future

applications of our proposed methodology depend on
the availability of appropriate instruments. Given that
cost drivers and wholesale cost data are increasingly
becoming available, this should not be too much of
a problem in the future. An interesting methodolog-
ical extension would be to account explicitly for the
discrete nature of purchase quantities. A methodology
similar to Arora et al. (1998) could be the starting point
for such an analysis. Using the structural derivation
of our model, one could measure consumer welfare
while accounting for differing welfare gains from pri-
mary versus secondary demand considerations.
A limitation of the current analysis and, more gen-

erally, comparable models capturing quantity choices
is the simplistic treatment of consumer shopping
dynamics. Currently, our model does not distinguish
between increased consumption versus stock-piling
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during weeks with above-average quantity purchases.
Accounting for consumer stock-piling and the result-
ing consumer shopping dynamics is computationally
beyond the scope of the current paper. However,
important advances have been made in recent work
using household data (e.g., Erdem et al. 2003). Extend-
ing such dynamic analysis to aggregate settings
would be a challenging, but important contribution to
this literature.
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Appendix

A. Inversion of the Demand Function
In this section of the appendix, we show that our pro-
posed procedure (Equation (12)) for inverting the expected
demand function (Equation (11)) to recover 5 is a contrac-
tion mapping. That is, iteratively solving (12) converges to a
vector 5 that uniquely reconciles Q̃jst in Equation (11) with
the average quantity per customer in the data, qjst .
The expected demand function (Equations (10) and (11))

implied by the model is:

Q̃jst�5�6�=
∫
− yst
�spjst

Pr�Dijst=1�Iist=1�ln$P�Iist=0�%0�1�21

=
∫ yst
�spjst

eVijst∑J
k=1eVikst

ln
[
1+

J∑
k=1

eVikst
]
0�1�21

=
∫ yst
�spjst

e5jst+7ijst∑J
k=1e5kst+7ikst

ln
[
1+

J∑
k=1

e5kst+7ikst

]
dF �7��

(A0)
The iterative function g�·�< �J → �J (Equation (12)) is
defined as:

g�5�= 5+ ln�q�− ln$Q̃�5�% (A1)

We show that g�·� is a contraction mapping by proving that
it satisfies the conditions described in Appendix 1 of Berry
et al. (1995). The subscripts s for “store” and t for “week”
are dropped for clarity. The main conditions to prove are:
(a) g�·� is continuous in 5;
(b) 2gj �5�/25r ≥ 0 ∀ r� j ; and,
(c)

∑J
r=1 2gi�5�/25r < 1.

The function is continuous by construction. To prove (b), we
first show that 2$gj �5�%/25j ≥ 0, and then that 2$gj �5�%/25r ≥
0� ∀ r �= j .
(b.1) To show that 2gj �5�/25j ≥ 0, note that

2

25j

(
e5j+7ij

/ J∑
k=1

e5k+7ik

)

= Pr�Ci = j � Ii = 1� ∗ $1−Pr�Ci = j � Ii = 1�%�

and that

2

25j

(
ln
[
1+

J∑
k=1

e5k+7ik

])
= Pr�Ci = j� Ii = 1��

Also note that at a given guess of the parameter vector, �
is known and is fixed. Hence,

2$gj �5�%/25j

= 1− 1

Q̃j �·�
∫ y

�pj
Pr�Ci = j � Ii = 1�$Pr�Ci = j� Ii = 1�

− ln�Pr�Ii = 0�!�1−Pr�Ci = j � Ii = 1�!% dF �7�� (A2)

Comparing the numerator of the second term above to
line 1 of Equation (A0), we can see that for 2$gj �5�%/25j ≥ 0,
it is equivalent to prove that:

$Pr�Ci = j� Ii = 1�− ln�Pr�Ii = 0�!�1−Pr�Ci = j � Ii = 1�!%

≤− ln�Pr�Ii = 0�!�

which is equivalent to showing that

Pr�Ci = j � Ii = 1�$1−Pr�Ii = 0�+ ln�Pr�Ii = 0�!%≤ 0�

This holds since Pr�Ii = 0� ∈ $0�1%.
(b.2) To show that 2gj �5�/25r ≥ 0, r �= j , note first that

2

25r

(
e5j+7ij

/ J∑
k=1

e5k+7ik

)

=−Pr�Ci = j � Ii = 1�Pr�Ci = r � Ii = 1�⇒ 2gj �5�

25r

=− 1

Q̃j �·�
∫ y

�pj
Pr�Ci = j � Ii = 1�Pr�Ci = r � Ii = 1�

· $Pr�Ii = 1�+ ln�Pr�Ii = 0�!% dF �7�

= 1

Q̃j �·�
∫ y

�pj
Pr�Ci = j � Ii = 1�Pr�Ci = r � Ii = 1�

· �− ln$�1−Pr�Ii = 1�!ePr�Ii=1�%�︸ ︷︷ ︸
≥ 0

dF �7�

≥ 0� (A3)

(c) To show that the sum of the derivatives is less that 1,
note that:

J∑
r=1

2gi�5�

25r
=1− 1

Q̃j �·�
∫ y

�pj
Pr�Ci= j�Ii=1�fidF �7�� (A4)

where,

fi = Pr�Ci = j� Ii = 1�− ln�Pr�Ii = 0�!�1−Pr�Ci = j � Ii = 1�!

+ �Pr�Ii = 1�+ ln�Pr�Ii = 0��!
∑
r �=j

Pr�Ci = r � Ii = 1��
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Comparing the numerator of the second term in (A4) to
line 1 of Equation (A0), we can see that for

∑J
r=1 2gi�5�/25r <

1, it is equivalent to prove that: fi < − ln�Pr�Ii = 0�!. This
reduces to showing that

Pr�Ii = 1� ∗ $Pr�Ii = 1�+ ln�1−Pr�Ii = 1�!% < 0�

This holds since Pr�Ii = 1� ∈ $0�1%.
Hence, g�·� is a contraction mapping, and therefore, iter-

atively solving (A1) will converge to a unique vector 5.

B. Method of Simulated Moments Procedure
Recall from §3 that we construct moment conditions based
on the mean-independence assumption E$�jstZjst � Zjst% = 0,
where Zjst contains both the observed product characteris-
tics and additional exogenous instruments. Since the eval-
uation of ��6� requires simulation of integrals, estimation
is carried out using a method of simulated moments proce-
dure (Pakes and Pollard 1989). We define the sample ana-
logue of the moment vector, M�6� = Z′��6�. Estimation
involves searching for parameter values, 6GMM, that set
M�6� as close as possible to zero. We estimate all param-
eters by minimizing the GMM objective function, 7�6� =
M�6�WM�6�. For our application, we use the optimal
weight matrix, W = �E$M�6�M�6�′%�−1 (Hansen 1982).

C. Simulations
We conduct several simulations to assess the robustness of
our proposed estimation procedure to various forms of con-
sumer behavior. In each case, we use 30 replications and
report the mean findings across the replications. First, we
show that the proposed model is capable of recovering the
parameters when it is the true model. Second, we show
the model provides reasonable price elasticities when the
“true” model is the logit. Third, in contrast with the second
simulation, we show that the logit model does not perform
well when the “true” data are generated from the proposed
model. Fourth, we show that the proposed specification per-
forms reasonably well when the data are generated from
an alternative (noneconomic) model of consumer behavior.
Finally, we show that the proposed model is robust to indi-
visible consumer quantity choices at the individual level.
A more detailed account of these simulations and the results
(along with additional simulation cases) is available online
at the journal website.

(1) Recovery of Parameters
We begin by generating (simulated) data from the proposed
model to verify that our MSM procedure is capable of recov-
ering the true parameter values. We consider both the cases
with and without unobserved taste heterogeneity for brands
(i.e., random coefficients). For the latter, we also consider
the case that the unobserved brand characteristics, �jst , are
uncorrelated with prices.
For simplicity, we assume there are two alternatives in

the choice set and that prices and promotions are the only
causal variables other than intrinsic brand tastes. Actual
scanner data from a two-brand product category are used
for prices and promotions. The data consist of prices and
promotions at the chain level for 90 weeks for the oats cate-
gory, in which Quaker Oats and the Dominick’s store brand

are the only two major brands. Price and promotional vari-
ables for the model were created by taking the difference
of the variables across the two brands. Average expendi-
tures of consumers for each of the 90 weeks were simulated
as Uniform�5�20�. Average quantities per consumer for the
90 weeks were generated by integrating over the expected
demands of consumers who are allowed to make multiple-
unit purchases. We report the results in Table A1 and we
find that the proposed model does a good job of recovering
all the parameters.
We now allow for unobserved heterogeneity in the intrin-

sic brand preference parameter.13 We consider two cases
corresponding to low/high variance in the intrinsic prefer-
ence heterogeneity. The results are reported in Table A2 and
correspond to the means, standard deviations, and mean
absolute percentage deviations (MAPDs) of the recovered
parameter values for the two cases. The results reveal that
for the range of parameter values considered, the proposed
model does a good job of recovering the intrinsic prefer-
ence and the price and promotion sensitivity parameters.
The variation in the standard deviation in the intrinsic pref-
erence heterogeneity across replications is high, but is com-
parable to those of the single-unit logit (see Chintagunta
2003). We conclude that our proposed model can recover
the true model parameters from the aggregate data in the
presence of multiple-unit purchases.

(2) Performance of Proposed Model When Data Are
Generated from Logit

Here we generate data from the standard logit demand sys-
tem and to see how well the proposed discrete/continuous
model performs (i.e., the true data consist of single-unit
purchases but the econometric model allows for multi-unit
purchases). One must keep in mind that not all of the
parameters are directly comparable across the two mod-
els (i.e., logit and discrete/continuous). Some of the struc-
tural interpretations of parameters differ as do the role these
parameters play in the statistical models. For instance, the
price parameter represents the marginal utility of income
in the logit. Statistically, it captures the price sensitivity of
choices. In the discrete/continuous model, the price param-
eter, �s , is a scale parameter from the quality function. Sta-
tistically, it captures both the price sensitivities of choices
and quantities. We will report parameter estimates from
both a logit and a discrete/continuous specification below.
But, to make a more sensible comparison, we will focus our
attention on comparing elasticities. We compare category
demand expansion/brand switching effects implied by the
proposed discrete/continuous model when it is estimated
on data generated by logit demand.
We consider a 3-alternative case with 2 brands and an

outside good. 190 weeks of prices for the two brands
are generated as Uniform�2�5�; demand shocks simulated
as normal�0�0�1�, and expenditures �y� fixed at 5. Using
this “data,” market shares corresponding to various sets of
brand intercepts and price sensitivity parameters are simu-
lated from a logit model. The proposed discrete/continuous
model is then estimated. The implied category purchase

13 The number of draws for simulating the integral was fixed at 100
and the variance of � is set to 1 for all simulations.
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Table A1 Monte Carlo Results with No Heterogeneity

True and estimated parameter values for the discrete/continuous model

True Model True Model True Model True Model True Model True Model

Intrinsic preference −4�50 −4�466 −4�50 −4�458 −4�50 −4�473 −4�50 −4�480 −4�50 −4�480 −4�50 −4�483
Price sensitivity 1�50 1�545 2�00 2�050 2�50 2�539 3�00 3�032 3�50 3�547 4�00 4�037
Promotion sensitivity 0�50 0�418 0�50 0�413 0�50 0�418 0�50 0�402 0�50 0�425 0�50 0�428

Table A2 Monte Carlo Results with Heterogeneity in Intrinsic Preferences

Low std. deviation in intrinsic preference High std. deviation in intrinsic preference

True Mean Std. deviation MAPD True Mean Std. deviation MAPD

Intrinsic preference −6�000 −6�536 1�200 24�637 −6�000 −5�665 1�297 28�650
Price sensitivity 2�000 1�897 0�609 14�430 2�000 1�637 0�626 19�274
Promotion sensitivity 0�500 0�652 0�382 18�508 0�500 0�563 0�671 21�641
Std. deviation in intrinsic preference 0�500 0�303 0�811 67�498 1�000 0�305 1�298 84�750

Table A3 Performance of Proposed Discrete/Continuous Model When Data Are Generated from Logit

Due to a 1% ↑ in
the price of: True Model True Model True Model True Model True Model

Brand 1 intercept −2�000 −3�646 −2�000 −3�227 −2�000 −2�926 −2�000 −2�699 −2�000 −2�515
Brand 2 intercept −4�000 −5�650 −4�000 −5�230 −4�000 −4�928 −4�000 −4�700 −4�000 −4�516
Log(Price) −2�000 −1�779 −2�500 −2�283 −3�000 −2�814 −3�500 −3�396 −4�000 −3�835

% change in conditional choice probability of:
Brand 1 Brand 1 −0�279 −0�240 −0�360 −0�319 −0�533 −0�484 −0�601 −0�573 −0�807 −0�754
Brand 2 Brand 2 −1�700 −1�521 −2�111 −1�939 −2�430 −2�296 −2�850 −2�775 −3�135 −3�027
Brand 2 Brand 1 1�725 1�542 2�150 1�971 2�481 2�342 2�922 2�843 3�221 3�106
Brand 1 Brand 2 0�276 0�238 0�355 0�315 0�527 0�478 0�593 0�566 0�798 0�745

% change in category purchase probability:
Brand 1 −1�670 −1�512 −2�084 −1�926 −2�407 −2�281 −2�826 −2�757 −3�109 −3�004
Brand 2 −0�271 −0�236 −0�351 −0�313 −0�520 −0�473 −0�585 −0�559 −0�785 −0�735

Brand 1 intercept −2�000 −2�917 −2�000 −2�919 −2�000 −2�935 −2�000 −2�831 −2�000 −2�947
Brand 2 intercept −2�000 −2�902 −2�500 −3�439 −3�000 −3�931 −3�500 −4�346 −4�000 −4�947
Log(Price) −3�000 −2�756 −3�000 −2�898 −3�000 −2�851 −3�000 −2�742 −3�000 −2�729

% change in conditional choice probability of:
Brand 1 Brand 1 −1�482 −1�364 −1�151 −1�109 −0�815 −0�771 −0�673 −0�596 −0�510 −0�443
Brand 2 Brand 2 −1�494 −1�372 −1�823 −1�765 −2�154 −2�053 −2�293 −2�117 −2�453 −2�253
Brand 2 Brand 1 1�503 1�379 1�845 1�785 2�190 2�085 2�337 2�154 2�505 2�297
Brand 1 Brand 2 1�491 1�370 1�152 1�109 0�811 0�766 0�667 0�590 0�503 0�438

% change in category purchase probability:
Brand 1 -1.463 −1�350 −1�793 −1�744 −2�125 −2�033 −2�267 −2�099 −2�429 −2�238

Brand 2 −1�450 −1�342 −1�126 −1�090 −0�797 −0�756 −0�657 −0�583 −0�497 −0�434

Notes. Data for this table: 190 weeks of data generated from logit demand model with Brand 1 prices= uniform�25�, Brand 2 prices= uniform�25�, y = 5,
� = iid N�00�1�. “True”= Logit; “Model”= Discrete/continuous.

incidence, and conditional (on category purchase) brand-
choice elasticities for both models are computed by taking
the average of the percent change in these values due a
1% change in price, across all observations. The results are
presented in the two panels in Table A3. Since parame-
ters are not directly comparable across the logit and dis-
crete/continuous models, we focus instead on the estimated
elasticities. Referring to Table A3, we find that the dis-
crete/continuous model is reasonably able to recover the
incidence and brand-choice elasticities implied by the “true”
logit model that generated the data.

(3) Performance of Logit When Data Are
Generated from Proposed Model

We now consider the reverse case to the second simulation
experiment. We simulate data from the discrete/continuous
demand model and then estimate the parameters using a
logit model. Analogous to study (b), we compare category
demand expansion/brand switching effects. The results are
presented in Table A4. We find that when the true under-
lying model is discrete/continuous, the logit does not seem
to provide reasonable elasticities. In particular, when con-
ditional quantities at the individual level range from 2 to
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Table A4 Performance of Logit When Data Are Generated from Proposed Model with High Conditional Quantities

Due to a 1% increase
in price of: True Model True Model True Model True Model True Model

Brand 1 intercept −1�000 2�418 −1�000 1�707 −1�000 1�298 −1�000 1�098 −1�000 0�872
Brand 2 intercept −1�000 2�421 −1�000 1�689 −1�000 1�305 −1�000 1�069 −1�000 0�868
Log(Price) −2�000 −3�610 −2�500 −3�778 −3�000 −4�152 −3�500 −4�586 −4�000 −5�020
Mean conditional quantity 4�047 3�102 2�590 2�216 1�919

% change in conditional choice probability of:
Brand 1 Brand 1 −0�979 −1�743 −1�284 −1�962 −1�474 −2�021 −1�771 −2�332 −2�049 −2�571
Brand 2 Brand 2 −1�009 −1�832 −1�199 −1�778 −1�502 −2�083 −1�697 −2�195 −1�908 −2�377
Brand 2 Brand 1 1�012 1�850 1�203 1�794 1�512 2�112 1�711 2�228 1�929 2�420
Brand 1 Brand 2 0�981 1�759 1�290 1�984 1�482 2�047 1�787 2�371 2�075 2�623

% change in category purchase probability:
Brand 1 -0.931 −1�296 −1�138 −1�512 −1�452 −1�927 −1�647 −2�066 −1�863 −2�288

Brand 2 −0�902 −1�233 −1�220 −1�668 −1�421 −1�848 −1�722 −2�205 −2�002 −2�474

Notes. 190 weeks of data generated from logit demand model with Brand 1 prices= uniform�25�, Brand 2 prices= uniform�25�, y = 25, � = iid N�00�1�.
“True”= Discrete/continuous; “Model”= Logit.

4 units, the logit overstates aggregate conditional brand-
choice elasticities by about 44%, and aggregate category
purchase elasticities by about 31% on average. The overstat-
ing of the brand-choice and category expansion effects is
consistent with the empirical results in the paper (see §§5.2
and 5.3).

(4) Divisibility of Quantities
Finally, we generate data from an underlying model in
which quantity choices are indivisible (i.e., integer quantity
choices) to explore the robustness of the divisibility assump-
tion implicit in our proposed specification. We generate data
from the model of Arora et al. (1998) (henceforth AAG). For
simplicity, here we consider the one alternative case in the
AAG framework.
The aggregate demand corresponding to AAG resembles

the proposed model except for the expression for expected
conditional quantities. Specifically, the conditional quanti-
ties are (Equation 11, p. 33 in AAG):

p0�q�= Pr�Qj = q�= F $�q+ 0�5�pj/�%− F $�q− 0�5�pj/�%�

where F �·� is the cdf of an extreme value distribution with
location parameter �/� − ln�p� + � ln$1/Pr�j�% and scale
parameter �. The corresponding expected conditional quan-
tity to this model is:

E$Q%discrete =
�∑
q=1

$q ∗ p0�q�%�

In contrast, our proposed specification has expected condi-
tional quantity:

E$Q%continuous =
�

pj
$�/�− ln�pj �+��3 + ln�1/Pr�j�!�%�

where 3 is Euler’s constant. In the simulation, we com-
pare E$Q%discrete and E$Q%continuous. We first generate N �=
100� prices from uniform�2�4�, and compute E$Q%discrete and
E$Q%continuous for various values of �/� and �. For all com-
putations, � = 1, and “�” = 50 (in the summation on
E$Q%discrete). The results are given in Table A5. We see that

Table A5 Comparison of Expected Conditional Quantity Under Discrete
and Continuous Cases

�/� = 3�0 � = 1�0

� E�Q�continuous E�Q�discrete �/� E�Q�continuous E�Q�discrete

1.0 0.9677 0.9833 3.0 0.8960 0.9150
1.1 1.0644 1.0807 3.1 0.9257 0.9492
1.2 1.1612 1.1767 3.2 0.9558 0.9831
1.3 1.2580 1.2720 3.3 0.9862 1.0166
1.4 1.3547 1.3671 3.4 1.0169 1.0496
1.5 1.4515 1.4623 3.5 1.0479 1.0820
1.6 1.5483 1.5577 3.6 1.0791 1.1137
1.7 1.6450 1.6533 3.7 1.1106 1.1447
1.8 1.7418 1.7491 3.8 1.1422 1.1750
1.9 1.8386 1.8451 3.9 1.1741 1.2047
2.0 1.9353 1.9413 4.0 1.2062 1.2339

the difference in expected conditional quantity between the
two cases is quite small. And since it is the expected quan-
tity that impacts the aggregate demand functions, the dif-
ference between the two cases is likely to be very small.
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