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For several of the largest supermarket product categories, such as carbonated soft drinks, canned soups,
ready-to-eat cereals, and cookies, consumers regularly purchase assortments of products. Within the category,

consumers often purchase multiple products and multiple units of each alternative selected on a given trip. This
multiple discreteness violates the single-unit purchase assumption of multinomial logit and probit models. The
misspecification of such demand models in categories exhibiting multiple discreteness would produce incorrect
measures of consumer response to marketing mix variables. In studying product strategy, these models would
lead to misleading managerial conclusions.
We use an alternative microeconomic model of demand for categories that exhibit the multiple discreteness

problem. Recognizing the separation between the time of purchase and the time of consumption, we model
consumers purchasing bundles of goods in anticipation of a stream of consumption occasions before the next
trip. We apply the model to a panel of household purchases for carbonated soft drinks.
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1. Introduction
On a given trip, consumers regularly purchase
multiple products from the same category. We find
evidence of such purchase behavior for carbonated
soft drinks (CSDs), ready-to-eat cereals, canned soups,
and cookies—four of the top five revenue-generating
categories in the dry grocery department in U.S. food
stores according to ACNielsen. For each of these cate-
gories, more than 20% of the shopping trips resulting
in a within-category purchase involve the simultane-
ous purchase of at least two alternatives. In this paper,
we focus on CSDs, which account for more than 10%
of total sales in the dry grocery department. In a panel
of household shopping trips, only 39% of the trips
involving a CSD purchase result in the purchase of a
single unit of a single UPC product. In fact, roughly
31% of the trips result in the purchase of two or more
products, and the remaining 30% of the trips result in
the purchase of multiple units. Table 1 reports on the
distribution of total CSD brands and items per shop-
ping trip.
Typically, researchers using household scanner

panels estimate expected demand with discrete-
choice models (DCMs), such as the conditional
logit (Guadagni and Little 1983) and the multi-
nomial probit (Chintagunta 1992, McCullough and
Rossi 1994). In categories in which consumers reg-
ularly purchase assortments, imposing the single-
unit purchase assumption of the DCM will generate

incorrect consumer responses to marketing mix vari-
ables. For instance, in the context of quantity pur-
chases, Chintagunta (1993) shows that brand choice
alone in categories with multiunit quantity purchases
only accounts for part of the total price response and,
in some instances, generates inelastic price elastici-
ties. In addition to providing incomplete estimates
of consumer preferences, the misspecification of the
DCM could also lead to incorrect managerial pre-
dictions for these categories. Finally, the DCM does
not make use of potentially valuable information con-
tained in the quantity data.
Following Hendel (1999), we use a structural ap-

proach that allows for a more general form of
multiunit and multibrand shopping behavior in a
single unified choice model. This structural approach
to modeling the assortment choice follows a recent
marketing tradition of using microeconomics to guide
the specification of an appropriate model of consumer
demand. For instance, Erdem and Keane (1996) model
consumer learning about product quality, Gonul and
Srinivasan (1996) model consumer price expectations,
and Erdem et al. (2002) model both price expecta-
tions and inventory accumulation. Hendel’s approach
involves modeling assortment behavior as the out-
come of several simultaneous discrete decision prob-
lems. Hence, he refers to this type of behavior as
multiple discreteness.
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Table 1 Carbonated Soft Drinks

Products/Units 1 2 3 4 5 6 7 8 9 10+ Total

1 20�652 11�238 1�447 2�454 245 454 33 282 19 215 37�039
2 0 6�928 2�215 1�817 436 464 146 259 45 166 12�476
3 0 0 1�322 768 302 247 114 109 45 130 3�037
4 0 0 0 335 165 109 63 77 28 69 846
5 0 0 0 0 51 69 27 18 16 41 222
6+ 0 0 0 0 0 7 20 12 12 33 84

Total 20�652 18�166 4�984 5�374 1�199 1�350 403 757 165 654 53�704

In the current shopping context, this multiple dis-
creteness arises for several reasons. Typically, mar-
keters interpret shopping behavior in scanner panels
as outcomes for a single consumer. In fact, many of
the panelists are shoppers making decisions for the
entire household. The consumption of the purchased
goods typically occurs at some point after the trip.
Therefore, the shopper must make multiple decisions
in anticipation of the various occasions during which
goods will be consumed. A separate choice is made
for each anticipated consumption occasion. If prefer-
ences vary across these consumption occasions, then
one would expect consumers to purchase a bundle of
alternatives. Formally, the primitives of our shopping
model involve a consumer optimizing a separate
subutility function for each anticipated consumption
occasion. The derived econometric model predicts the
total expected vector of purchases.
Because the consumption occasions are not ob-

served in the purchase data, we are not able to
characterize the precise context in which alterna-
tives are consumed. However, the marketing liter-
ature provides several explanations for why one
would observe shoppers making multiple decisions.
For instance, McAlister (1982) documents individuals
seeking variety by switching their consumption of
CSDs between several alternative flavors over time.
At the time of purchase, this form of variety-seeking
would induce consumers to select an assortment of
alternatives. Similarly, if consumers are uncertain of
their tastes at the future time of consumption, they
may purchase an assortment to ensure they have the
right product on hand (Hauser and Wernerfelt 1991,
Simonson 1990, Walsh 1995). Alternatively, the shop-
per may make several decisions based on the varying
tastes of several members of a household, such as chil-
dren versus adults. Each of these scenarios provides
a rationale for why consumers may need to make
multiple decisions at the time of purchase. With stan-
dard scanner panel data, it is not possible to resolve
any particular one of these theories. Instead, we view
them as explanations for the multiple decisions in our
shopping model.
We find that the proposed model provides a good

fit of the aggregate purchases for each alternative. In

terms of the characterization of multiple-item shop-
ping, the estimates provide substantial evidence of
both observed and unobserved heterogeneity. Demo-
graphics play a significant role in determining differ-
ences in tastes in addition to identifying differences
in the assortment of total purchases on each trip. To
help understand some of the underlying structure, we
estimate several comparison models that relax certain
assumptions. In general, we find that most of our
model parameters are fairly robust to these assump-
tions. We also compare our results to a purely statis-
tical model of “quantity-then-brand choice.”
An attractive feature of the current approach is

the structural derivation, linking the statistical model
to consumer theory. First, we have an intuitive link
between our estimated parameters and consumer
preferences. When the models are used to conduct
marketing simulations, the link to individual utility
maximization also allows us to measure consumer
welfare. The Hicksian compensating variation can be
used to measure consumer willingness to pay in dol-
lars to maintain the status quo versus a hypotheti-
cal change in the marketing or category conditions.1

Finally, the derivation of CSD demand from con-
sumer theory ensures that aggregate demand is “well-
behaved,” such that a retailer’s corresponding profit
function satisfies all the conditions necessary for
deriving an optimal price vector. For instance, many
researchers have used double-log approximations for
aggregate demand. Once this specification is used to
study category profitability, additional ad hoc restric-
tions may need to be imposed for the profit function
to be maximized (Anderson and Vilcassim 2001). In
this sense, a structural derivation has practical appeal.
The paper is organized as follows. The second sec-

tion describes the model of individual choice and
demonstrates its relationship to the standard DCM. In
§3, we discuss the econometric specification and the
estimation procedure. Section 4 describes the data. In
§5 we also report on the results, including parame-
ter estimates and substitution patterns. We also report

1 For instance, Chintagunta et al. (2002) measure the impact of zone
pricing on consumers. An earlier version of this paper measured
the impact of product deletions on consumer welfare.
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in §6 on the results of sensitivity analysis of the pro-
posed model to various underlying assumptions, as
well as results from a purely probabilistic comparison
model. Finally, we present conclusions in §6.

2. Household CSD Demand
Our model is similar to that of Hendel (1999),
who looks at the multiple discreteness in firms’
profit-maximizing computer holdings decisions. We
consider a random utility framework in which house-
holds make optimal shopping decisions subject to a
budget constraint. For a given category on a given
trip, the consumer anticipates several future con-
sumption occasions and chooses some quantity of
the optimal brand for each occasion. Allowing pref-
erences to vary across these consumption occasions
leads to consumers purchasing bundles of products
and varying quantities of each. An interesting feature
of Hendel’s framework is that it can be shown to be
a generalization of the typical discrete-choice model
(e.g., logit or probit).
In practice, we do not observe the specific con-

sumption occasions. Intuitively, we expect the source
of these occasions to reflect such factors as many fam-
ily members with varying tastes, the replenishment
of overall household CSD inventory, and uncertain
future tastes. However, without time-of-consumption
data, we are unable to model the specific context in
which products are consumed. Instead, we model the
distribution of consumption occasions, consisting of
the expected number of occasions and the tastes for
each. The model first generates an integer number
representing the number of consumption occasions
for which a shopper must make purchases during
the trip. Each of these consumption occasions has its
own set of corresponding preferences. For each con-
sumption occasion, the shopper chooses an optimal
quantity of one of the alternatives. The model predicts
the total purchase vector for a given trip, integrating
across the decisions made for each of the anticipated
consumption occasions.
Two recent studies have also modeled the incidence

of multiple-item purchases.2 Harlam and Lodish
(1995) use a variant of the DCM to estimate multiple
brand purchases, but not the quantity of each alter-
native chosen. Because the model formulation is not
structural, this specification will not be able to pro-
vide profit and consumer welfare measurements in
assessing marketing strategy. Kim et al. (1999) pro-
pose an alternative imperfect substitutes specification
capable of addressing both the multiple brand and the
quantity decisions. At the time of a trip, a household

2 Manchanda et al. (1999) investigate purchase incidence decisions
across categories.

optimizes a separate subutility function for each prod-
uct alternative, rather than for each expected con-
sumption occasion. The purchase of assortments of
goods reflects heterogeneity of rates of diminishing
marginal returns for the various alternatives. In con-
trast, we explain assortments by heterogeneity in
tastes across expected consumption occasions. The
imperfect substitutes model would be difficult to
apply to CSDs, because the large number of product
alternatives would require identifying a large number
of subutility functions.

2.1. The Model
Because the expected number of consumption occa-
sions on a given trip follows a count process, a logi-
cal starting point is to assume a Poisson distribution.3

The total expected number of decisions a consumer
must make during a trip is an integer drawn from
a Poisson distribution. We allow the mean of this
Poisson distribution to vary across consumers and
across trips. Formally, during a shopping trip on date
t, a household h purchases a basket of various alter-
natives in the category in anticipation of Jht different
future consumption occasions. Jht is an integer value
that is derived from a Poisson distribution with a
mean �ht :

Jht ∼ P��ht�� (1)

where �ht = D′
ht
, Dht is a vector of household char-

acteristics and shopping behavior that may vary over
time, and 
 is a vector of parameters.
For each of these j = 1� � � � � Jh (we drop the time

subscript for expositional convenience) expected con-
sumption occasions, the household generates utility
from consuming from among the i= 1� � � � � I products
in the category:

uhj �Qij�Dh��� =
( I∑
i=1
�h
ij Qij

)�
Sh�

j = 1� � � � � J � h= 1� � � � �H� (2)

where Sh = D′
h�. In the above specification, �h

ij

represents the household’s perceived quality for
alternative i on consumption occasion j . The value Qij

is the quantity chosen for alternative i. The parameter
� captures the curvature in the utility function. So
long as the estimated value of � lies between 0 and 1,
the model maintains the concavity property needed
for an interior solution.4 Sh captures the effect of
household characteristics on the scale of purchases,
and � is a vector of parameters. Because the utility

3 In our results section, we discuss the sensitivity of our findings to
the Poisson assumption.
4 Kim et al. (1999) use a product-specific � to allow diminishing
returns to differ across products.
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function has a perfect substitute specification, a sin-
gle alternative will be chosen for the consumption
occasion. The model permits any positive quantity of
this alternative because of the curvature, �. Moreover,
because the consumer has such Jh decisions to make
on each trip, the aggregate purchase vector may con-
tain several alternative products and varying quanti-
ties of each.
We define perceived quality in the following

manner:

�h
ij = max�0�X ′

i�
h
j + �i�mh (3)

�hj = �̃+D′
h�+��hj � (4)

Quality has the typical hedonic structure where Xi
is a vector of product i’s attributes, �hj is the vector
of household h’s tastes for attributes on consump-
tion occasion j , and �i is a vector of product-specific
fixed effects (brand intercepts). We use a random coef-
ficients specification for the tastes in Equation (4).
Vector �̃ captures the portion of tastes common to all
households and consumption needs, and � is a vector
of interactions between demographics and tastes for
attributes. Finally, � is a diagonal matrix whose ele-
ments are standard deviations, and �hj is a vector
of independent standard normal deviates. Thus, for
each household, the taste vector will be distributed
normally with, conditional on demographics, mean
�̃+�Dh and covariance matrix ��′ (i.e., � contains
the Cholesky factors of the covariance matrix of �).
In addition, we include the term mh =D′

h� to capture
potential differences in households’ tastes for quality,
where � is a vector of parameters. Note that because
mh does not vary across brands, it allows households
to purchase more expensive alternatives, regardless
of the underlying product attributes. As such, this
term introduces a vertical component to preferences.
Finally, the specification allows for zero demand (no-
purchase), depending on the values of the product
valuations � .
In formulating the household’s decision problem at

the time of a trip, we assume preferences are quasilin-
ear to separate the utility from purchases of the I soft
drink products and a composite commodity of other
goods, z. Conditional on Jh, the total utility of house-
hold h at the time of a shopping trip is given by:

Uh =
Jh∑
j=1
uhj �Qij�Dh���+ z� (5)

The household’s expenditure constraint is given by:

Jh∑
j=1

I∑
i=1
piQij + z≤ yh�

where pi is the price of product i and yh is the house-
hold’s total shopping budget. Given the specification

of the utility function, the expenditure equation binds
and may be substituted into (5) to give:

Uh =
Jh∑
j=1
uhj �Qij�Dh���−

Jh∑
j=1

I∑
i=1
piQij + yh� (6)

Conditional on the number of anticipated consump-
tion occasions, Jh, the household’s problem will be
to pick a matrix with columns Qj �j = 1� � � � � Jh� to
maximize (6).
Given the additive separability of (6) across each of

the Jh expected consumption occasions, we can treat
each decision independently. The optimal quantity of
brand i for occasion j solves the first-order condition:

�
(
�h
ij

)�(
Q∗
ij

)�−1
Sh− pi = 0�

Rewriting the first-order condition in terms of Q∗
ij

gives:

Q∗
ij =

(
�
(
�h
ij

)�
Sh

pi

)1/1−�
� (7)

which is the optimal quantity of product i for con-
sumption occasion j . The optimal quantity of a given
brand is increasing in Sh, which is why we describe
this term as impacting the scale of purchases. The
fact that consumers must purchase integer quanti-
ties does not pose a problem, because the subutility
functions (2) are concave and monotonically increas-
ing in Qij . These properties ensure that we only need
to consider the two contiguous integers to Q∗

ij . We
then compare the 2 · I potential quantities, picking
the one yielding the highest utility. Each of these
optimal quantities has a corresponding latent util-
ity u∗

j = �u∗
j1� � � � �u

∗
jI �, where u

∗
ji =maxQ uhj �Qij�Dh���.

The perfect substitutability ensures that a household
selects brand i if u∗

ji =max�u∗
j1� � � � �u

∗
jI �� Households

carry out a comparable decision for each expected
consumption occasion.
For each trip, we observe the sum of all of these

optimal quantities in the form of an aggregate pur-
chase vector. The model’s predicted value for this
aggregate purchase vector has the following form:

EQh�Dh�X��� =
�∑
Jh=1

Jh∑
j=1

∫ �

−�
· · ·

∫
Qh∗
j �Dh�X��

h
j ���

· f �� �Dh���p�J �Dh���&�� (8)

where f �� � Dh��� is the normal probability density
function of the taste vector conditional on house-
hold characteristics and model parameters, and p�J �
Dh��� is the Poisson probability density function of
the number of expected consumption occasions condi-
tional on household characteristics and model param-
eters. Note that although we make distributional and
functional form assumptions on the primitives of
the model, econometrically, we estimate the expres-
sion (8), which is derived from the model.
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2.2. Comparison with the Standard DCM
An interesting feature of the random utility frame-
work in the previous section is that it is a direct exten-
sion of the standard DCMs. Disregarding the expected
consumption occasions and assuming that consumers
are restricted to single-unit purchases, then � no
longer plays any role and (6) reduces to:

uhi =Xi�Sh− pi� i= 1� � � � � I �
In this formulation, we are no longer able to identify
m�Dh�, so we set it to one for all households. We can
also divide through by Sh to obtain:

ũhi =Xi�−
1
Sh
pi� (9)

where the inverse of Sh is usually interpreted as the
price-response parameter. Adding a random distur-
bance term directly in (9) gives the standard random
utility DCM (McFadden 1981). The proposed model
differs from the DCM in several ways. The curvature
in the utility function enables consumers to purchase
multiple units of a given product alternative instead
of choosing either zero or one unit. The number
of consumption occasions, generated by the Poisson
distribution, implies that consumers solve multiple-
choice problems on a trip. Allowing preferences to
vary across these consumption occasions, a different
alternative may be selected for each occasion. As a
result, the total category shopping basket may include
a variety of product alternatives and multiple units of
each alternative chosen.
In general, existing marketing models are not suit-

able for categories exhibiting multiple discreteness.
For instance, treating each unit purchased as an inde-
pendent outcome from a DCM still conditions on the
number of items in the shopping basket (e.g., the
number of decisions made per trip). This model will
not be able to predict expected demand out of the
sample because the number of decisions would be
unknown. Similarly, the “brand-then-quantity choice”
specification of Krishnamurthi and Raj (1988) would
require conditioning on the total number of brands
chosen. Ignoring the structural derivation, we con-
struct an alternative statistical model that captures the
multiple discreteness and, at the same time, general-
izes the standard DCM. In the Appendixes, we out-
line the derivation of a “quantity-then-brand choice”
model. In the section on “Model Sensitivity,” we com-
pare the estimates of this statistical model to those of
the proposed model described previously.

3. Estimation Procedure
In this section, we discuss the intuition for the econo-
metric model we estimate. The two main features of

the methodology are the use of method of simulated
moments and a nonparametric correction for serial
dependence in the prediction errors. We defer the for-
mal details regarding the estimation procedure to the
Appendixes.
Referring back to §2.1, our model consists of the

following system (where we have omitted the time
subscripts):

EQ�Dh�X��� =
�∑
Jh=1

Jh∑
j=1

∫
· · ·

∫ �

−�
Qh∗
j �Dh�X��

h
j ���

· f �� �Dh���p�J �Dh���&� (10)

�ht = D′
ht
 (11)

Sh = D′
h� (12)

mh = D′
h� (13)

�hj = �̃+D′
h�+��hj � (14)

Our objective is to estimate (10), the I-dimensional
vector of total purchases for each alternative on a
given shopping trip. In addition to the parameters,
�, the purchase vector is a function of data matri-
ces Dh, household characteristics, and X, product
characteristics.
To estimate the model parameters, we use the

generalized method of moments (GMM) approach,
constructing conditional moments based on (10). To
handle the complex multivariate integrals, we sim-
ulate the moments using Monte Carlo methods
(McFadden 1989, Pakes and Pollard 1989), which
allows us to obtain consistent parameter estimates.
We use 30 draws and assume this number is suf-
ficient to eliminate any noticeable simulation error.
For each store trip, we take 30 independent draws
from the Poisson distribution to simulate the num-
ber of expected consumption occasions. For each of
these draws, we then take �N + I − 1� × K draws
from the standard normal distribution to simulate the
taste coefficients for these occasions, in which N is
the dimension of X and K is a sufficiently large num-
ber to place an upper bound on the number of occa-
sions simulated for each household. These draws are
then used to construct 30 simulations of the expected
purchase vector for each trip. Simulated moments are
obtained by averaging across the 30 simulated trip
vectors. Technical details of the GMM procedure are
provided in the Appendixes.
The panel structure of the data potentially intro-

duces additional problems with the efficiency of
our estimates. We attempt to control for both cross-
sectional and intertemporal persistence in the data. To
deal with the cross-sectional aspect of the data, we
include several state variables, such as temperature
and seasonal dummies, to capture contemporaneous
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aggregate demand shocks that could affect house-
holds in a similar fashion. However, most households
also have fairly long purchase histories, which could
exhibit persistent unobserved shocks (McCulloch and
Rossi 1994, Seetharaman 1999 provide parametric
time-series methods for multiperiod probit models).
In the GMM procedure, we use a nonparametric cor-
rection for serial dependence in the prediction error
based on Conley (1999). In this way, we correct the
standard errors of our parameter estimates for serial
dependence. Details for this standard error correction
are presented in the Appendixes.

3.1. Identification
We now discuss several identification-related issues
that arise for the proposed econometric model. In
the data, we observe total demand, but we do not
observe the specific expected consumption occasions.
Nonetheless, we are able to identify the process that
generates these occasions. The main identification
problem involves the distinction between a household
purchasing, for example, five units of CSDs to satisfy
five expected occasions versus five CSDs to satisfy a
single occasion. Because the random tastes are inde-
pendent across consumption occasions, a household
with several decisions will tend to purchase several
different alternatives. However, a household with a
single consumption occasion will only purchase one
alternative. The number of consumption occasions
determines the joint distribution of the total num-
ber of units of CSDs purchased and the number of
different brands.
Several features of the model help us identify this

distribution. Note that the mean of the Poisson gener-
ating the number of expected consumption occasions,
the scale of purchases and the perceived product qual-
ities, �h, Sh, and �h

ij , respectively, are all functions of
household characteristics, Dh. Suppose household size
increases both �h and Sh. Allowing household size
to influence both terms enables the model to distin-
guish between having a lot of consumption occasions
and purchasing a large quantity for a given consump-
tion occasion. Similarly, suppose income increases Sh
and interacts positively with premium brands in �h

ij .
Allowing income to enter both these terms enables
the model to distinguish between the number of units
purchased and the product selected for a given con-
sumption occasion. Although several different sets of
parameter values could give the same likelihood for
expected total purchases, they would not have the
same likelihood for the joint distribution of total prod-
ucts and total units purchased. Because the sample
households tend to purchase baskets containing sev-
eral different soft drink products, the data identify
this joint distribution.

An additional identifying assumption we make
involves the independence of tastes across consump-
tion occasions. We implicitly rule out cross-occasion
externalities. It is not immediately clear how our
results would change if we allowed for correlation
in tastes across consumption occasions. However, if
we were able to characterize specific consumption
occasions, one might observe a phenomenon such as
selecting cola for one situation increasing the likeli-
hood of purchasing a non-cola for another situation.
Finally, the large number of product alternatives

in the CSD category makes it infeasible to estimate
a full matrix of correlated product-specific random
effects. These correlated random effects typically play
an important role in allowing for flexible substitution
patterns between product alternatives. For instance,
one might expect Diet Coke to be a closer substi-
tute to Diet Pepsi than regular Coke. If the price
of Diet Pepsi rises, one would want the model to
permit Diet Pepsi consumers to switch primarily to
Diet Coke rather than to other nondiet alternatives.
Rather than capturing this “closeness” via correlated
brand intercepts, we use the Lancasterian character-
istics approach (e.g., Berry 1994, Fader and Hardie
1996). In the model, we characterize product alterna-
tives in terms of their underlying product attributes
(as described in the section on “Data”). The ran-
dom coefficients for the product attributes enable
flexible substitution patterns. Suppose a household’s
utility-maximizing choice for a given expected con-
sumption occasion is a 6-pack of Diet Pepsi. If a
household exhibits strong preferences for low-calorie
goods on a consumption occasion, the household will
tend to substitute other low-calorie alternatives for
Diet Pepsi. If the consumption occasion also exhibits
strong preferences for a specific package size, such
as the 6-pack of cans, then the household will tend
to substitute other low-calorie 6-packs for 6-packs
of Diet Pepsi. The advantage of this characteristics
approach is the parsimonious representation of sub-
stitution patterns. Effectively, consumer preferences
are projected onto product attributes, which vastly
reduces the number of parameters needed.

4. Data
The scanner data, collected by ACNielsen, cover
the Denver area between January 1993 and March
1995. These data include consumer information for
a random sample of 1,920 households, as well as
weekly store-level information for 58 supermarkets
with more than $2 million all-commodity volume.
The store-level information consists of weekly prices,
sales, and feature and display activity for 26 diet and
regular products with a combined share of 51% of the
household-level category sales. The list of 26 products
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consists of all universal product codes (UPCs) with at
least a 1% share of total-sample CSD volume each. Of
these 26 products, 12 are owned by Pepsi, 8 are owned
by Coke, and 6 are owned by Cadbury-Schweppes.
The household-level data cover all shopping trips for
these items. For each trip, we know the date, the store
chosen, and the quantities purchased. For each alter-
native available within the store, we know the prices
and whether the product was featured in a newspa-
per or as an in-store display. Combining the store and
purchase data sets, we observe the full set of prices
and marketing mix variables for all the alternatives
on a given trip.
We treat different package sizes of a given product

as separate goods. Thus, our analysis is at the UPC
level. In the beer category, Allenby and Shively (2001)
view different product sizes as a nonlinear pricing
scheme based on consumers’ volume choice. In the
CSD context, the inherent difference in storability of
small cans versus large bottles leads us to view sizes
as different products altogether.
For each shopping trip, we construct a quality mea-

sure for each product based on both fixed and time-
varying attributes (reported as per 12-oz serving). The
fixed attributes consist of the ingredients of the prod-
uct, which we collect from the nutritional information
printed on the product packages: total calories, total
carbohydrates, sodium content (in milligrams), and
a set of dummy variables that indicate the presence
of caffeine, phosphoric acid, citric acid, caramel color,
and clear. We also include package-size indicators:
6-pack of 12-oz cans (6×cans), 12-pack of 12-oz cans
(12×cans), and 6-pack of 16-oz bottles (6 × bottles),
omitting 67.6-oz bottles, because we include an inter-
cept. The time-varying attributes are shelf prices and
marketing mix variables: feature ads and displays.
Because the A&W root beer and cream soda are indis-
tinguishable in terms of these observable attributes
and marketing variables, we combine them into one
generic A&W brand.
We also include controls for household-specific loy-

alty to brands and specific products. We include a
dummy variable, brand loyalty, indicating whether
the brand was purchased on the previous trip. We
also include a dummy variable, product loyalty, indi-
cating whether a specific product was purchased on
the previous trip. This second variable distinguishes
loyalty to a brand (e.g., Coke vs. Pepsi), opposed to
loyalty to a specific package size of a brand, 6-pack of
Coke versus a 12-pack of Coke. Linking these param-
eters back to the economics of consumer choices
implies that consumers are myopic. Implicitly, con-
sumers condition on the past but do not account for
the impact of current decisions on future choices. It
is difficult to provide a rational justification for these
parameters when consumers are forward looking (see

Table 2 Descriptive Statistics (Averaged Across Trips)

Standard
Variables Mean Deviation Minimum Maximum

Kids 0�3865 0�4870 0 1
Family size 2�6976 1�4034 1 9
Income bracket 4�2470 1�9616 1 9
Female under 35 0�1964 0�3973 0 1
Time between trips (days) 6�8498 13�7602 0 763
Max. temperature (F) 64�6149 19�8264 8 99
Holiday 0�1747 0�3797 0 1
Price ($) 2�1515 0�3782 0�2 6
Feature ad 0�3203 0�0579 0 1
Display 0�4174 0�0503 0 1

Chintagunta et al. 2001 for a discussion). Despite
the theoretical limitations, they have been found to
improve the ability to predict purchases (Guadagni
and Little 1983, Erdem 1996, Keane 1997).
Summary statistics of the demographic variables

and time-varying product attributes used in the esti-
mation appear in Table 2. Table 3 breaks down the
fixed characteristics by flavor group, providing a
rough sense of the relative positions of the differ-
ent products in attribute space. These characteristics
pick up such differences as the fact that Diet Coke,
which contains citric acid, does not have the same
flavor as regular Coke, which does not contain cit-
ric acid. The nondiet colas, lemon/lime, and pepper
drinks are quite similar, with around 150 calories on
average. The root beers and the citrus beverages are
substantially higher, with about 170, and the new age
are substantially lower, with 120. Phosphoric acid is
used in all regular colas, all the diet colas, and in all
the peppers. Although citric acid is found in all the
fruit drinks, it is also used in many of the other prod-
ucts. The caramel and clear attributes span all of the
products except for the citrus (Mountain Dew), which
are yellow.

5. Results
5.1. Baseline Model
We now present the results from our base model.
In the following section, we discuss the sensitivity
of our model to some of the specification and dis-
tributional assumptions. Model parameter estimates
appear in Tables 4 and 5. We begin by discussing
results for the means and standard deviations of
random taste parameters in (14). These are the ele-
ments of the vector � in Equation (3).5 As expected,
both feature ads and displays have a strong positive
influence on perceived product quality. The loyalty

5 Mean tastes for fixed product attributes are obtained by regressing
product fixed effects on the measured attributes. The regression
uses the estimated variances of the fixed effects as weights.
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Table 3 Continuous Attributes by Flavor and Diet Versus Regular (Averages)

Continuous Variables Indicator Variables

Flavor Calories Mg Sodium Carbohydrates Caffeine Phosphorus Citric Acid Caramel Clear No.

Cola
Regular 150 (7.5) 40�5 �7�4� 41 (1.51) 7 7 4 7 0 7
Diet 0 (0) 34�7 �8�7� 0 (0) 6 9 9 9 0 9

Lemon/lime
Regular 143.3 (5) 61�7 �16�4� 38�333 �0�5� 0 0 2 0 2 2
Diet 0 (0) 35 (0) 0 (0) 0 0 1 0 1 1

Root beer
Regular 168.3 (4.1) 44�2 �14�6� 44�8 �1�5� 0 0 0 1 0 1

Citrus
Regular 170 (0) 70 (0) 46 (0) 3 0 3 0 3 3

Pepper
Regular 148.6 (3.8) 45�7 �8�9� 35�1 �15�5� 3 3 0 3 0 3

parameters, brand loyalty, and product loyalty show
that conditioning on past brand choices and specific
UPC choices provide information in predicting cur-
rent preferences. These parameters suggest that loy-
alty to a specific brand might be stronger than loyalty
to a given UPC. For instance, consumers are slightly
more loyal to Coca-Cola in general than to a specific
package size of Coca-Cola. Interestingly, their effect
sizes are quite small, suggesting that consumer ten-
dencies toward specific products may be driven more
by preferences than habit. We also observe signifi-
cant unobserved heterogeneity in consumer percep-
tions of product-specific quality (the intercept term).
Although we find that the mean household places

Table 4 Estimated Taste Parameters of the Quality Function �

Variables � Standard
in Equation (14) � Mean (S.E.) Deviations (S.E.)

�: Feature ad 1�52 �0�03� 0�06 �0�01�
�: Display 2�00 �0�04� 0�79 �0�05�
�: Brand loyalty 0�27 �0�03� —
�: Product loyalty 0�02 �0�16� —
�: Constant 1�02 �0�16� 1�88 �0�03�
�: Diet −0�06 �0�01� 0�26 �0�02�
�: Sodium −0�03 �0�00� —
�: Carbs 0�23 �0�02� —
�: Caffeine 0�47 �0�04� —
�: Phosphorus −0�04 �0�07� —
�: Citric 0�04 �0�04� 1�23 �0�04�
�: Caramel 0�14 �0�11� 0�22 �0�02�
�: No color 0�77 �0�07� —
�: Cans× 6 1�60 �0�02� 1�19 �0�11�
�: Cans× 12 0�57 �0�03� 0�30 �0�02�
�: Bottles× 6 0�72 �0�11� 0�19 �0�02�
�: Kids ∗Caffeine 0�40 �0�03� —
�: (Household size ∗Servings) 0�01 �0�00� —
�: Female head< 35 1�13 �0�03� —
Store trips 169,788

Note. S.E.= standard error.

little weight on whether a CSD is diet, we also find
a substantial amount of heterogeneity. In particular,
the distribution suggests an almost even split between
positive and negative valuations of diet. At the same
time, households place weight on higher energy (car-
bohydrate) beverages.
Previous marketing studies have found seemingly

contradictory results with regard to the effects of
demographics. With a few exceptions, the research
generally finds weak and inconsistent effects (dis-
cussed in Kalyanam and Putler 1997). In the case
of CSDs, however, we expect different-flavored prod-
ucts to cater to different demographic segments.
For instance, households with a female head under
35 years old tend to have higher preferences for diet
products.6 In fact, we might find additional explana-
tory power from dummies such as female head with
a college degree.7 Similarly, larger households place
slightly more weight on products with more 12-oz
servings, such as the 12-pack (as captured by hh
size ∗ serv). Households with kids place a higher
weight on products with caffeine than those with-
out. Despite controlling for demographic interactions,
we still find evidence of unobserved heterogeneity
in tastes for package size �6-packs�12-packs� � � �� and
diet, suggesting that demographics alone are insuffi-
cient to explain taste differences.
We now move on to Table 5, which contains the

parameters characterizing the mean of the Poisson
distribution, vector �h in Equation (11), the expo-
nent mh in Equation (13), the scale component Sh in
Equation (12), and curvature parameter �h. Similar to

6 Diet Pepsi was reintroduced in Europe with double caffeine as
Pepsi Max to overcome its “feminine” image.
7 “Just who’s buying all these soft drinks, anyway?” Beverage
Industry, 84(3), 1993.
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Table 5 Estimated Nonlinear Coefficients in Utility Function

Variables in Equations (11), (12), and (13) Coefficient (S.E.)


: Kids 0�336 �0�001�

: Family size 0�041 �0�000�

: Time since last CSD 0�001 �0�000�

: Time since last trip −0�003 �0�000�

: Temperature 0�004 �0�000�

: Holdiay 0�009 �0�000�
sh: Constant 1�549 �0�104�
sh: Family size 0�958 �0�049�
sh: Time since last trip 0�012 �0�003�
sh: Time since last CSD 0�013 �0�003�
mh: Income 2�305 �0�172�
� 0�009 �0�001�

Note. S.E.= standard error.

Kalyanam and Putler (1997), we find that demograph-
ics are key for identifying product holdings. We are
able to capture this additional role for demographic
variables by using the quantity information, which is
omitted in standard DCM models of brand choice.
The expected number of consumption occasions, �h,
depends positively on the presence of children and
on family size. Thus, larger households with children
should have more expected consumption occasions
and, in turn, should purchase more brands on a given
trip. Holiday weeks (such as Christmas, Labor Day,
and Memorial Day) exhibit the expected large positive
effect on needs. Similarly, temperature increases the
number of expected consumption occasions. Finally,
the time since the last CSD purchase increases �h,
but the time since the last shopping trip seems to off-
set this effect.
The scale of purchases, Sh, also increases with fam-

ily size. Therefore, one would expect larger house-
holds to purchase larger quantities of the brands
selected. Unlike the positive relationship with �h,
which increases the scope of products purchased, Sh
impacts the actual quantity, as seen in (7). Similarly,
the scale of purchases increases with both the time
since the last trip and time since the last CSD pur-
chase. The strong positive effects are consistent with
the notion that household inventories have depleted
and need replenishing. The vertical component, mh,
increases with income, suggesting that households
with higher income have a higher taste for quality
(e.g., a higher willingness to pay for high-quality
goods). Finally, the estimated values of � are positive
and below one, which is consistent with the notion
that the utility function is concave.
The reported standard errors have been corrected to

account for potential serial dependence. We attempt
to control for as many of the observed potential
dynamic factors, such as timing of trips, loyalty, and
inventories, as possible. Despite these controls, we
still find unexplained persistence in the residuals.

Accounting for time-series increases some of the
standard errors by as much as a factor of 1.8 in
comparison with the simple robust standard errors.8

Nonetheless, almost all the parameters remain sig-
nificant after this correction, probably because of the
extremely large sample. For now, we have not derived
an explicit source for this persistence, focusing solely
on the precision of our standard errors. Because most
marketing studies do not correct for unobserved time-
series, these findings suggest the need for further
research into how well existing static models capture
both heterogeneity as well as choice dynamics.

5.2. Aggregate Demand and Substitution Patterns
We use elasticities to measure consumer sensitivity
to marketing mix variables. Because households do
not face the same mix of marketing variables across
shopping trips, we report elasticities in response to
uniform percentage changes in marketing mix vari-
ables. Following Ben-Akiva and Lerman (1985), we
report the sum of the elasticity on each trip, )ipk ,
weighted by the share of total unit sales: )ipk =∑T

t=1 )
ti
pk
�Qti/

∑T
t=1Qti�� i= 1� � � � � I .

Table 6 presents estimated own-price, feature ad,
and display elasticities for the baseline model. All
of the own-price elasticities are greater than one,
which is consistent with typical static category-pricing
models. Because feature ads and displays are binary
variables, we report the change in demand from
switching from a zero value to a one. We find that
advertising has the largest impact on caffeine-free diet
colas, the 12-pack of peppers, and on the lemon-lime
products. In contrast, regular colas appear to have
the lowest advertising and display responses. We also
find that advertising has a relatively small effect on
the 6-packs of cans and bottles, and a relatively large
effect on 67.6-oz bottles. We find similar effects from
display. From a retail manager’s perspective, these
results suggest that the ability to stimulate consumer
response from marketing tools, such as newspaper
advertising and in-store displays, will vary for differ-
ent flavors and for different package types.
In a separate Appendix (available from the authors

on request), we present the cross-price elasticities
from the baseline model. The predicted substitu-
tion patterns show that, most importantly, consumers
seem to respond to price changes by switching
to another product of the same size. Most of the
observed substitution patterns reflect realistic interac-
tions. Almost all products substitute primarily to a
cola. Also, 6-packs of caffeine-free Diet Pepsi are very
substitutable with 6-packs of Diet Pepsi. Mountain
Dew and Dr. Pepper are generally predicted as likely
substitutes. Surprisingly, we find little interaction

8 We do not find any evidence of cross-sectional dependence.
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Table 6 Own Price, Ad, and Display Elasticities for the Baseline Model
and Multinomial Comparison Model

Multinomial Model
Baseline Model No Price Prices

Products Price Feature Ad Display in 
 in 


PEPSI 6P −2�38 1�41 1�69 −0�59 −1�29
COKE CLS 6P −2�11 2�25 2�49 −0�59 −1�32
PEPSI DT 6P −3�61 2�01 1�98 −0�62 −1�35
COKE DT 6P −2�47 2�32 2�47 −0�67 −1�46
DR PR 6P −3�14 2�78 2�81 −0�73 −1�51
MT DW 6P −3�04 2�85 3�06 −0�72 −1�37
PEPSI DT CF 6P −3�56 2�69 2�87 −0�68 −1�44
A&W CF 6P −3�59 3�57 3�84 −0�73 −1�54
PEPSI 16 oz −2�25 1�42 1�50 −0�85 −1�68
PEPSI 12P −2�16 2�44 2�69 −0�64 −1�40
COKE CLS 12P −2�13 2�40 2�67 −0�64 −1�39
COKE DT 12P −2�50 2�33 2�31 −0�72 −1�53
PEPSI DT 12P −2�66 3�16 3�63 −0�74 −1�61
DR PR 12P −2�47 3�95 4�20 −0�81 −1�69
MT DW 12P −3�02 3�09 3�04 −0�82 −1�54
COKE DT CF 12P −2�76 4�05 3�45 −0�78 −1�61
SP CF 12P −2�57 4�71 4�97 −0�78 −1�53
PEPSI DT CF 12P −2�92 6�20 6�14 −0�81 −1�70
PEPSI 67.6 oz −2�62 2�10 2�23 −0�42 −1�02
COKE CLS 67.6 oz −2�80 3�41 3�42 −0�43 −1�04
PEPSI DT CL 67.6 oz −2�66 3�16 3�40 −0�47 −1�10
COKE DT 67.6 oz −2�81 4�65 4�77 −0�48 −1�19
DR PR 67.6 oz −2�94 3�18 3�32 −0�49 −1�16
7UP R CF 67.6 oz −2�57 3�13 3�57 −0�45 −1�02
7UP DT CF 67.6 oz −2�61 3�41 3�47 −0�47 −1�01
MT DW 67.6 oz −3�23 4�11 4�16 −0�49 −1�07

Notes. 6P = 6-pack; CLS = classic; DT = diet; DR PR = Dr. Pepper; MT
DW=Mountain Dew; CF= caffeine free; 12P= 12-pack; SP= Sprite; CL=
Cola; R= regular.

between Sprite and 7UP, mainly because they do not
include comparable sizes in the choice set.

5.3. Model Sensitivity
In this section, we check the sensitivity of our baseline
model to various underlying assumptions. In Tables 7
and 8, we present results from comparison models
to investigate the sensitivity of our taste parameters
to the specification of consumption occasions. We also
report the mean-square error from out-of-sample pre-
dictions in Table 8, where we re-estimate each model
using the first eight quarters of data, using the ninth
quarter as a holdout sample.
The baseline model’s parameter estimates appear

in the first column. In the second column (hetero-
geneous Poisson), we check the sensitivity of our
Poisson assumption by mixing it with a normally dis-
tributed random intercept. This modification offsets
some of the restrictive properties of the Poisson, such
as the equal mean and variance. The use of this more
flexible distribution leads to smaller parameter mag-
nitudes in the mean of the Poisson, as well as the
vertical component, mh. However, we do not see a
notable impact on the taste parameters. We also see a

relatively lower predictive ability out of sample than
the baseline model.
In the third column (reference prices), we control

for price expectations using proxies for reference
prices (see Kalyanaram and Winer 1995 for a survey).
Using a price index for the previous trip, as well as for
the current trip, we implicitly assume that consumers
use past observations of shelf prices to form an inter-
nal reference point with which to assess the cur-
rent price level (Winer 1985).9 The omission of price
expectations could limit the model if, for instance,
households defer some of their current purchases
in anticipation of better prices on a subsequent
trip. Interestingly, these additional controls reduce
the size of the random intercept in �. However, as
before, the taste parameters appear to be fairly robust
to this change. Out of sample, this model performs
very similarly to the simple heterogeneous Poisson.
Although beyond the scope of the current analysis,
others have modeled forward-looking behavior by
consumers more formally in the context of discrete-
choice models when consumers have expectations
about prices (Gonul 1999) or quality (Erdem and
Keane 1996).
In the final column (deterministic Jh), we investi-

gate the role of modeling the consumption occasions.
We check the sensitivity of the Poisson specifica-
tion by restricting the number of decisions made on
a given trip to be equal to the actual number of
alternatives purchased, making Jh deterministic �Jht =∑I

i=1 I,Qhit>0.�. This model would have limited appeal
for managers running policy simulations, because it
cannot predict the changes in consumers’ demand
in response to a counterfactual change in marketing
conditions. Although many of the parameters appear
qualitatively unchanged, the scale of purchases, Sh,
now depends very heavily on family size. Offset-
ting this effect, the interaction between family size
and package size (in the tastes) becomes insignificant.
Similarly, the responses to feature ads and displays
increase dramatically, suggesting these parameters
may be relatively more sensitive to the ability of the
model to forecast the number of consumption occa-
sions. These changes are likely related to the fact
that conditioning on the total number of brands in
the shopping basket also provides information about
no-purchase. To provide a reasonable out-of-sample
predictive fit, we do not condition on the observed
number of brands. Instead, we set Jh equal to house-
hold h’s average number of brands per trip in the esti-
mation sample (average brands). We also set Jh equal
to the predicted number of brands using a simple
regression of total brands on the covariates used in �h
in the baseline model (regression). For both cases, we

9 We thank Russ Winer for suggesting this approach.
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Table 7 Nonlinear Coefficients

Variables Baseline Heterogeneous Poisson Reference Prices Deterministic Jh


h: Intercept — 0�330 �0�001� 0�076 �0�000� —

h: Kids 0�336 �0�001� 0�040 �0�000� 0�328 �0�001� —

h: Family size 0�041 �0�001� 0�001 �0�000� 0�040 �0�000� —

h: Time since last CSD 0�001 �0�000� 0�003 �0�000� 0�001 �0�000� —

h: Time since last trip −0�003 �0�002� −0�003 �0�000� −0�003 �0�001� —

h: Temperature 0�004 �0�001� 0�010 �0�000� 0�003 �0�001� —

h: Holdiay 0�009 �0�004� 0�056 �0�02� 0�010 �0�004� —

h: Favorite products — — 1�007 �0�004� —

h: Overall prices — — 0�466 �0�002� —

h: Lag favorite products — — −0�427 �0�002� —

h: S.D. of intercept — 1�535 �0�084� 0�056 �0�000� —
sh: Constant 1�549 �0�104� 0�978 �0�048� 1�545 �0�079� 0.132 (0.024)
sh: Family size 0�958 �0�049� 0�013 �0�001� 0�986 �0�049� 8.662 (0.037)
sh: Time since last trip 0�012 �0�003� 0�013 �0�004� 0�013 �0�001� 0.010 (0.002)
sh: Time since last CSD 0�013 �0�003� 2�344 �0�143� 0�013 �0�003� 0.009 (0.005)
mh: Income 2�305 �0�172� 0�009 �0�520� 2�358 �0�165� 2.699 (0.520)
� 0�009 �0�001� 0�009 �0�001� 0�010 �0�001� 0.008 (0.001)
Hansen’s J (degrees-of-freedom) 629.49 (206) 649.94 (204) 641.24 (201) 534.97 (212)

Average Brands Regression
Out-of-sample MSE 0.0407 0.0417 0.0418 0.0475 0.0491
Store trips 169,788 169,788 169,788 169,788

Notes. S.D.= standard deviation; MSE= ?; lag= ?.

find that the baseline model provides a better out-of-
sample fit according to the mean-square error.
To pursue the role of consumption occasions fur-

ther, we now consider a purely statistical model that
treats the total number of items in the shopping bas-
ket �Qh

t =
∑I

i=1Q
h
it� as a Poisson random variable. The

allocation of these items across the 26 brands is mod-
eled as a multinomial distribution. The corresponding
success probabilities for this multinomial distribu-
tion are modeled as standard random coefficients log-
its. The derivation of this model is provided in the
Appendixes. We report empirical results in Table 9.
Because the treatment of prices in the Poisson quan-
tity regression is arbitrary, we report a specification
with no prices included, as well as a specification with
the mean of all 26 prices for the shopping trip.10

Interestingly, demographic variables seem to play
a comparable role in determining the expected total
number of product alternatives purchased. Note
that the taste parameters do not have precisely the
same interpretation as in the baseline model. In the
“quantity-then-brand choice” model, we need to nor-
malize one of the alternatives (we use A&W), so that

10 We also attempted to include each of the 26 product prices in the
Poisson model, adding an additional 26 parameters. Although this
specification did not alter the other model parameters dramatically,
several of the price coefficients had positive signs. For a category
monopolist, this would imply that setting the corresponding prices
to infinite would cause consumers to have infinitely large shopping
baskets.

our results are relative to this base brand.11 Market-
ing mix parameters have the expected signs, although
there seems to be much less heterogeneity in the
response to feature ads and displays. Unexpectedly,
the response to last product purchased is negative,
in contrast with the baseline model, where it is pos-
itive. This result would suggest that households are
loyal to brands, but vary the package sizes they
purchase. We also note the strong role of including
prices in the mean of the quantity regression, �. First,
the mean response to prices (� in the brand proba-
bilities) increases substantially. Second, many of the
variance terms ��� increase, implying a larger degree
of heterogeneity.
In Figure 1, we see that the baseline model and

the multinomial model provide comparable aggregate
sales predictions, although the multinomial model
underpredicts demand for the larger-share items. We
attribute this problem to the difficulty in relating
quantity decisions for each brand to their respective
shelf prices. In the multinomial model, the quantity
price elasticities are all captured through a single
parameter (the coefficient on mean trip price in �).
Similarly, the single-price parameter may not account
well for different package sizes (e.g., cents off a 6-
pack of cans may not be equivalent to cents off a
2-liter bottle). In contrast, the baseline model allows
consumers to assess each brand’s quality to price

11 This normalization also prevents us from recovering the mean
tastes for product attributes using the weighted regression
approach for the baseline model.
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Table 8 Taste Coefficients for Fixed Attributes in Quality Function—
First Stage Only

Baseline Heterogeneous Reference Deterministic
Variables Model Poisson Prices Jh

�: feature ad 1�52 1�41 1�41 7�32
�0�03� �0�03� �0�04� �0�05�

�: S.D. feature ad 0�06 0�06 0�06 0�44
�0�01� �0�01� �0�01� �0�02�

�: Display 2�00 1�79 1�79 7�69
�0�04� �0�04� �0�05� �0�06�

�: S.D. display 0�79 0�78 0�79 1�63
�0�05� �0�03� �0�07� �0�03�

�: Brand loyalty 0�27 0�28 0�28 0�37
�0�03� �0�04� �0�05� �0�03�

�: Product loyalty 0�02 0�02 0�02 −0�00
�0�16� �0�09� �0�01� �0�02�

�: S.D. constant 1�88 1�87 1�89 1�22
�0�03� �0�02� �0�04� �0�01�

�: S.D. diet 0�26 0�26 0�26 0�38
�0�02� �0�02� �0�03� �0�01�

�: S.D. citric 1�23 1�24 1�24 0�10
�0�04� �0�05� �0�04� �0�02�

�: S.D. caramel 0�22 0�21 0�21 0�00
�0�02� �0�02� �0�02� �0�01�

�: S.D. cans× 6 1�19 1�21 1�21 0�00
�0�11� �0�10� �0�10� �0�02�

� : S.D. cans× 12 0�30 0�30 0�30 0�00
�0�02� �0�01� �0�02� �0�01�

�: S.D. bott× 6 0�19 0�19 0�19 0�01
�0�02� �0�03� �0�02� �0�06�

�: (Kids ∗Caffeine) 0�40 0�39 0�39 2�15
�0�03� �0�02� �0�03� �0�08�

�: (Household size ∗ 0�01 0�01 0�01 0�00
Servings) �0�00� �0�00� �0�00� �0�00�

�: (Female head< 1�13 0�94 0�94 2�01
35 ∗Diet) �0�03� �0�04� �0�04� �0�03�

Store trips 169,788 169,788 169,788 169,788

Note. S.D.= standard deviation.

ratio for both quantity and brand choices. Referring
back to Table 6, we can also see that the multinomial
model predicts own-price elasticities that are much
lower than those of the baseline model. In the spec-
ification that omits prices entirely from the mean of
the quantity regression, the elasticities are all less
than one in magnitude, which would be inconsistent
with standard category management pricing mod-
els. Note that this finding of inelastic brand choice
probabilities is consistent with previous work study-
ing the role of quantities (e.g., Chintagunta 1993).
Including prices in the quantity regression results in
more elastic estimates of demand, albeit substantially
lower than those of the baseline model. Although not
reported, using these estimates to study category pric-
ing implies negative marginal costs (the implied mar-
gins are larger than the observed shelf prices). These
results may suggest the importance of allowing prices
to affect individual brand choices, as well as brand-
specific quantity decisions.

Table 9 Taste Coefficients for the “Quantity-Then-Brand Choice”
Model

No Price in 
 Prices in 


�̄ Mean � S.D. �̄ Mean � S.D.
Variables (S.E.) (S.E.) (S.E.) (S.E.)

�: Price −2�839 0�059 −6�241 3�026
�−0�039� �0�019� �0�041� �0�027�

�: Feature ad 0�036 0�031 0�007 0�027
�0�006� �0�005� �0�006� �0�005�

�: Display 0�571 0�0025 0�504 0�0016
�0�005� �0�004� �0�006� �0�005�

�: Product loyalty 2�761 2�209
�0�003� �0�0034�

�: Brand loyalty −1�114 −0�613
�0�029� �0�032�

�: Intercept 0�056 0�524
�0�002� �0�015�

�: Diet 0�019 0�969
�0�003� �0�005�

�: Citric 0�026 0�525
�0�004� �0�005�

�: Caramel 0�160 0�369
�0�008� �0�004�

�: Cans ∗ 6 0�018 0�336
�0�003� �0�009�

�: Cans ∗ 12 0�053 1�178
�0�003� �0�006�

�: Bottles ∗ 16 0�049 2�636
�0�013� �0�01�

�: Kids ∗Caffeine 0�1552 −0�014
�0�0077� �0�008�

�: (Family size) 0�000 −0�001
∗Servings �0�0004� �0�001�

�: �Female< 35� −0�543 −0�701
∗Diet �0�0057� �0�009�


: Kids 0�309 0�127
�0�002� �0�002�


: Family size −0�136 0�057
�0�001� �0�001�


: Time since 0�018 0�027
last CSD �0�000� �0�001�


: Time since −0�013 −0�011
last trip �0�000� �0�000�


: Temperature −0�008 0�0017
�0�000� �0�000�


: Holiday 0�299 0�400
�0�005� �0�005�


: Price — −0�382
— �0�003�

Store trips 169,788

Notes. S.E.= standard error; S.D.= standard deviation.

6. Conclusions
Although the typical logit and probit DCMs have pro-
vided useful predictions for consumer purchases in
many product categories, their restrictive single-unit
purchase assumption seems inappropriate for sev-
eral categories, such as CSDs. Instead, we estimate
a model that allows consumers to purchase a bun-
dle of products within a category. In addition, demo-
graphic variables, which have typically been found
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Figure 1 Model Sensitivity: Predicted Aggregate Sales (In-Sample) for Baseline Model and Multinomial Model
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to provide little information in marketing applica-
tions, are instrumental in determining the joint dis-
tribution of total product alternatives and total units
purchased on a given trip. Demographics also par-
tially explain observed differences in tastes for prod-
uct attributes. We also find that the correction for a
15-day lag in the persistence of the residuals has a
substantial impact on estimated standard errors of
choice model parameters. The estimates of consumer
preferences seem to be fairly robust to some of the
crucial underlying model assumptions.
The proposed specification derives from a micro-

economic framework of consumer choice. In addi-
tion to providing intuition for the underlying model
parameters, the structural model could also be useful
for policy simulations that require economic met-
rics such as consumer willingness to pay. To demon-
strate the advantages of the derivation, we compare
our estimates to an alternative statistical “quantity-
then-brand choice” model that also captures multiple
discreteness. Whereas the alternative model pro-
vides comparable in-sample predictions of aggregate
demand, it does not provide sensible price elasticities.
The current results suggest that accounting for

multiple discreteness may be relevant for measur-
ing the sensitivity of consumer demand to marketing
mix. Future research might consider the additional
role of attribute satiation on a given shopping trip.

Although simulating the consumption occasions, one
could introduce flavor interaction terms that reflect
which flavor combinations have been selected across
expected consumption occasions. In addition to link-
ing decisions across consumption needs, these inter-
action terms would also provide a statistical test for
complementarities between flavors.
Finally, the current analysis accounts for variety in

consumer purchases during a trip. Future research
may benefit from examining how shopping dynam-
ics influence consumer shopping baskets. For instance,
the number of consumption occasions during a trip
could be a function of both expectations about future
prices and the rate of consumption or inventory deple-
tion. Whereas we attempt to proxy for these effects,
current research may help provide guidance in how to
model these aspects formally (Erdem et al. 2002).
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Appendix A: GMM Procedure
Using (10), we define the prediction error )ht�Dht�Xht��0�=
EQ�Dht�Xt��� − Qht , where the vector Qht contains the
observed purchases. At the true parameter values, �0:

E,)ht�Dht�Xht��0�.=−→
0I � h= 1� � � � �H and t = 1� � � � � Th�

(15)
We also assume that:

E,)ht�Dh��0�)hk�Dht��0�
′.=��t−k�� (16)

where ��t−k� is a finite �I× I� matrix. Using (15), we can con-
struct conditional moments based on Zht = Dht ⊗ IJ , which
is independent of the unobservables (Hansen 1982):

E,Zht ∗ )ht�Dht��0� �Zht.=−→
0I �

For estimation, we use the sample analog of these condi-
tional moments:

g�DHT ���=
1
HT

H∑
h=1

Th∑
t=1
Zht ∗ )ht�Dht���� (17)

where DHT ≡ �D′
1T 1� � � � �D

′
HTH

� denotes the matrix contain-
ing all of the household/trip information for the sample
of H households, each making Th shopping trips, and T =
1/H

∑H
h=1 Th. We search for the value �GMM that minimizes

the function JHT given by:

JHT ���= 3g�DHT ���4′WHT 3g�DHT ���4� (18)

For the weight matrix, WHT , we use the inverse of the
asymptotic variance of g which gives asymptotically effi-
cient estimates under certain regularity conditions (Hansen
1982). The computation of W is discussed below. This
framework gives estimates with the following asymptotic
distribution:

√
N��GMM −�0� =⇒ N�0�6� (19)

6=
(
plim

{
dg�Dht��0�

d�

}
Wplim

{
dg�Dht��0�

d�

}′)−1
� (20)

Appendix B: Estimation of the Weight
Matrix, W

Hansen (1982) shows that, under certain regularity condi-
tions, the efficient weighting matrix WHT is the inverse of
S, the variance of the sample moments. The variance of the
moments has the following form:

S = lim
H�T→�

HT ·E{E(3g�DHT ��0�43g�DHT ��0�4′ �DHT )}

= lim
H�T→�

1
HT

H∑
h=1

Th∑
t=1

Th∑
k=1
E

[(
1+ 1

R

)
Zht�tkZ

′
hk

]
� (21)

where R is the number of simulation draws. Similar to
the discussion in McFadden (1989), the added simulation
“noise” will not affect the consistency of the estimator, but it
will reduce the efficiency by a factor of �1+1/R�. As R→�,
the estimator approaches asymptotic efficiency (we use 30
draws).
In the current context, S must account for the panel struc-

ture of the data. To deal with the cross-sectional aspect of
the data, we include several state variables, such as temper-
ature and seasonal dummies, to capture contemporaneous
aggregate demand shocks that could affect households in
a similar fashion. Despite these controls, we may still find
dependence in the shocks. The source of these shocks could
be systematic measurement error. For instance, household-
specific reporting errors in the scanning process or shop-
ping at nonscanner stores could generate unobserved serial
dependence. Alternatively, unobserved heterogeneity not
captured by the current model specification might also gen-
erate dependence. Yet another source of error consists of
unobserved local factors, such as the presence of a con-
venience store in which consumers purchase CSDs. One
might expect this latter source of error to be common across
households in close proximity, potentially generating cross-
sectional dependence.
To estimate the matrix S, we index each observation by

both time and household. We use Conley’s (1999) nonpara-
metric, positive, semidefinite covariance estimator, which is
analogous to Newey and West’s (1987) spectral time-series
estimator. This approach allows us to correct both for serial
dependence over time, as well as dependence across geo-
graphic space (e.g., households that are physically close to
one another may have correlated shocks). Given a consistent
estimate �̂ and a predetermined time L and inter-household
distance B, beyond which the dependence in the shocks dies
out, the estimator for S is:

ŜHT = 1
HT

H∑
h�l=1

L∑
t=1

Th∑
k=t+1

���t−k��dhl�

·[M�Dh�k��̂�M�Dl�k−t��̂�′ +M�Dh�k−t��̂�M�Dl�k��̂�′]
− 1
HT

H∑
h=1

Th∑
k=1
M�Dh�k��̂�M�Dh�k��̂�

′� (22)

where dhl is the Euclidean distance between households
h and l, and Ms�Dh�k� �̂� = Zhk ∗ )hk�Dhk� �̂�. We use the
Bartlett weight for ��t�d� to assign decreasing weight to
the correlation between households’ purchases as they grow
further apart in time and space:

���t−k��dhl�=



(
1− �t−k�

1+L �if t≤L
) (
1− dhl

1+B �if dhl≤B
)

0� else

�

(23)

Appendix C: “Quantity-Then-Brand Choice”
Model

In this section, we describe a combined quantity-and-brand
choice model that accounts for the multiple discreteness
observed in the soft drink purchases. The model consists of
two components. The first component, the Poisson quantity
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regression, estimates the total number of items in the shop-
ping basket on a given trip. The total units purchased are
distributed among the various brands according to a multi-
nomial distribution. The approach is similar to Dillon and
Gupta (1996), although they use cross-sectional data and
they do not include the no-purchase option.
More formally, we assume the total number of items in

household h′s basket during trip t, Q̃ht =
∑I
i=1Qhit , is dis-

tributed Poisson with mean, �h, a function of household
characteristics. Thus, category purchases for an individual
can be written as:

P�Q̃ht = nht>��=
�
nht
h e

−�h

nht !
� nht = 0�1� � � � �

To capture the brand choice aspect of demand, we
assume consumer choices are generated by a multinomial
distribution:

P�Qht1 = nht1� � � � �QhtI = nhtI >nh� ph�=
nht !∏
i nhit !

∏
i

p
nhit
hit �

where phit is the probability that consumer h chooses prod-
uct i and nht =

∑I
i=1 nhit are the total units purchased on

the trip. We model the brand choice probability, phit , as a
multinomial logit:

phit =
exp�Xit�h�

1+∑I
k=1 exp�Xkt�h�

�

where Xit is a vector of product i attributes including, mar-
keting mix, and �h is a vector of household h′s response
parameters. To capture heterogeneity across households, we
model the parameters, �h, as normally distributed random
variables:

�h = �̄+D′
h�+��h�

where �̄ is the mean response across households, � is a
diagonal matrix whose elements are standard deviations,
and �h is a vector of i.i.d. standard normal deviates. As
in the proposed model, we capture correlations in product
valuations using random tastes for product attributes.
Assembling the components of the model, we can write

the conditional likelihood for household h’s category pur-
chase vector on trip t:

Lht�� =
(
�
nht
h e

−�h

nht !
)(

nht !∏
i nhit !

∏
i

p
nhit
hit

)
�

The conditional likelihood of household h’s entire purchase
history is then computed as Lh�� =

∏
t Lht��. Accounting for

the uncertainty in household h′s response parameters, we
obtain the unconditional likelihood: Lh =

∫ ∏
t Lht�����@���d�,

where @�·� is the probability density function of a standard
normal random variable. To estimate the model parameters
�, �̄, and �, we use simulated maximum likelihood (see,
e.g., Erdem 1996).
Note that this alternative multinomial specification

shares many similarities to the proposed model of §2. For
instance, unlike standard brand choice models, we explic-
itly use the information contained in the quantity purchases.
A subtle difference in this model is that the total number

of items in the shopping basket is determined by the Pois-
son. In the proposed model of §2, the Poisson distribution
determines the number of consumption occasions, placing
an upper bound on the number of brands chosen. However,
the actual nunber of units of each of the selected brands is
not constrained by the Poisson.
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