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Abstract

In this appendix, we design a Monte Carlo simulation to explore the properties of the estimator

discussed in the paper. First, we compare the theoretical assumptions of our approach with other

popular likelihood-based approaches for household data. We then compare the empirical properties

of these approaches in the context of a Monte Carlo simulation. We find that our approach provides

robust results across numerous potential price-generation mechanisms. This is an important finding since

alternative approaches compared require very specific assumptions about the price-generation mechanism.

As a result, these alternative approaches are more vulnerable to specification biases.

We then focus on the proposed approach. We explore the importance of controlling for both en-

dogeneity and heterogeneity in scanner data models. Using Monte Carlo simulations, we provide some

evidence of biases that might arise if both sources of variation are not correctly accounted for. In par-

ticular, we find that ignoring the endogeneity bias not only biases mean effects, it also has an impact on

the variance in heterogeneity. In general, we find that the degree of heterogeneity in price sensitivity is

over-stated. This upward bias is amplified if price-insensitive consumers also systematically do not shop

when UBCs are high.

1 Comparison of Approaches

1.1 Derivation of approaches

We now discuss full information versus limited information approaches to dealing with price endogeneity in

the estimation of logit demand systems. We then contrast these approaches with our proposed instrumental

variables procedure. In the end, we aim to show that the trade-off between full information versus alterna-

tive approaches is a matter of choosing between a more precise estimate versus a consistent estimate (e.g.
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asymptotically unbiased). Adding more structure helps reduce the variance in parameter estimates, but as

we show below, it also increases the risk of specification error.

On the demand-side, consumer h derives the following conditional indirect utility from brand j at time

t:

uhjt = αj + βpjt + γFjt + λjt + εhjt, εhjt˜EV 1

where pjt is the price of brand j, Fjt is an indicator for a promotion for brand j , λjt denotes the impact

of potentially unmeasured (to the researcher) product attributes and εhjt is an idiosyncratic taste shock.

The coefficients Θ = (α1, ..., αJ , β, γ)
0 are taste parameters to be estimated. An additional J +1 brand with

uh0t = εh0t allows for an outside good (no-purchase option). The corresponding probability that household

h chooses brand j at time t, Phjt, is:

Phjt = Sjt (λt,pt,Ft;Θ) (1)

=
exp (αj + βpjt + γFjt + λjt)

1 +
PJ

k=1 exp (αk + βpkt + γFkt + λkt)
(2)

which is identical to the share of brand j at time t in this case. Typical household choice data consists

of a vector Yht = (yh1t, ..., yhJt)
0 denoting the brand chosen by household h at time t, where yhjt =⎧⎨⎩ 1, if brand j was chosen at time t

0, else
. From the model, we derive the density of the vector Yht condi-

tional on the marketing variables, p and F , and the unobserved attributes, λ:

fy (Yht|λt,pt,Ft;Θ) =
JY
j=1

P
yhjt
hjt . (3)

Typically, estimation is carried out by maxizing the corresponding likelihood function:

L (Θ) =

ThY
t=1

HY
h=1

fy (Yht|λt,pt,Ft;Θ) (4)

and the terms λjt are assumed to be zero (i.e. are ignored). Alternatively, if one knew the density of λ,

fλ (λ), one could integrate these terms out of the likelihood.

A concern arises if the terms λ, although unobserved to the researcher, do in fact influence choices and,

moreover, if retail prices are set to some extent based on these demand-shifting terms (i.e. λ is observed

by consumers and retailers). Essentially, this case is a data limitation for the researcher that results in

cov(pt,λt) 6= 0. Past research has motivated such data limitations as unmeasured promotions, advertising,
shelf space or stock-piling by consumers. Suppose, for instance, that shelf prices are generated according to

the following rule:

pjt = wjt +MU (λt,pt,Ft;Θ) + ωjt (5)

where wjt is the wholesale price, MU (·) is a function denoting the mark-up and ωjt captures additional

marginal costs to the retailer that are unobserved by the researcher. Clearly one cannot naively integrate λ

out of the likelihood in equation (4) as prices, by construction, vary with the level of λ. Many popular static
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analytical pricing models give rise to this type of pricing rule in equilibrium. For instance, the category

profit-maximizing pricing problem gives rise to:

pjt = wjt −
1

βS0t
+ ωjt (6)

and the individual brand profit-maxiziing pricing problem gives rise to:

pjt = wjt −
1

β (1− Sjt)
+ ωjt. (7)

In both cases, changes in λ will shift demand, Sjt, and hence will shift prices. Thus, p is correlated with λ.

Since prices depend on predicted demand, the density of prices will contain information about the demand

parameters. Hence, the likelihood (4) must be modified to include this information:

L (Θ) =

ThY
t=1

Z HY
h=1

fy (Yht|λt,pt;Θ) fp (pt|λt;Θ) fλ (λ) dλ. (8)

Evaluating the density of prices is tricky because (5) is an implicit function of prices. To derive the den-

sity of prices induced by the randomness in ω, we use the transformation of variables rjt = pjt − wjt −
MU (λt,pt,Ft;Θ) − ωjt, here ωt ∼ N(0,Ωω) and hence rt ∼ N(pt − wt +MU (λt,pt,Ft;Θ) ,Ωω). Using

the transformation-of-variabes theorem, we can derive the density of prices:

fp (pt|λt;Θ,Ωω) = fr (rt|λt;Θ,Ωω) |Jt (Θ) |

where Jt = dr
dp is a Jacobian. Estimation requires assuming a specific form of pricing conduct in order to

derive the analytical forms for Jt andMU (·). We provide the example of the brand profit-maximizing model
in the “examples” section below. Since this approach derives the price-generation mechanism “structurally"

(i.e. from a specific economic model), we term this approach “Full Information Maximum Likelihood"

(herertoafter FIML).

Similar structural approaches have been used by Villas-Boas and Zhao (2003) and, more recently, by

Yang et al. (2003). The latter also account for consumer heterogeneity in demand. However, the inclusion of

heterogeneity substantially complicates the evaluation of the Jacobian term, which they calculate numerically

rather than analytically. Our experience (in the context of the simulations below) is that the use of numerical

Jacobians creates a number of practical problems with the maximization of the likelihood. In general, if one

is confident the pricing model is correct, then this is the most efficient method of estimating the demand

parameters. However, in practice, this type of model may not provide a good representation of retail price

variation over time. For instance, retail prices may often exhibit large temporary price cuts that are not

reflected in the wholesale prices. These price cuts are essential for estimation as they provide the main

source of price variation and, hence, variation in consumer choices that help identify the parameters. Very

recent research has proposed dynamic models with consumer stock-piling to capture this type of sales timing

(Erdem et al 2003). However, these dynamic models are computationally well outside the range of feasible

structural models for the methods described above. A more severe problem with these full-information
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approaches is that, in the case of multi-product pricing, it is not possible to prove the uniqueness of the

price equilibrium. In other words, these types of models typically suffer from multiple equilibria problems.

Hence, the transformation-of-variables can not be performed and the Jacobian and the likelihood function

itself are not well-defined. In such cases, the structural approach is simply infeasible1 .

An alternative approach is to work with a more agnostic “limited-information maximum likelihood"

approach (heretoafter LIML), as in Villas-Boas and Winer (1999). While this method is less efficient than

the full-information approach described above, it is far less susceptible to specification error. From (5) , we

assume:

pjt = µj + φjwjt + ωjt

where µj and φj are parameters. One could interpret ω as ωjt = MU (λt,pt,Ft;Θ) + ωjt. Rather than

take a stand on the precise analytical form of the mark-up term (and hence underlying economic behavior)

MU (λt,pt,Ft;Θ) , we assume ωt ∼ fω (ω) and cov (ωt,λt) 6= 0. Note that this approach is entirely consistent
with the structural approaches described above, but it makes no specific assumptions about pricing conduct.

Now, the likelihood function is much simpler to construct as it does not require the evaluation of a Jacobian2:

L (Θ) =

ThY
t=1

Z HY
h=1

fy (Yht|λt,pt;Θ) fp (pt|λt;Θ) fλ (λ) dλ

where fp (pt|λt;Θ) = fω (ωt|λt,Ωω) .This approach is termed limited information because the density of
prices helps handle the endogeneity induced by λ, but it does not provide any additional information about

the demand parameters, Θ. More specifically, the inclusion of the density of prices helps us integrate out

λ correctly as prices vary with the level of λ. By relaxing the additional structure derived from a pricing

conduct assumption, this approach also avoids the multiple equilibria problem.

The limited information approach clearly has the advantage over the full-information approach in that

it requires far fewer assumptions about the economics generating prices. However, one must still make an

assumption about fω (ω|λt,Ωω). For instance, assuming ωt is distributed i.i.d. normal is still quite restrictive
with respect to the implicit underlying pricing conduct. For instance, neither the category or brand profit

models above would give rise to a normally-distributed error term of this sort. This approach also rules

out any autocorrelation in λ. This would be a concerning assumption if λ reflected promotions, consumer

inventories, advertising or other usual explanations used to motivate its inclusion, all of which would likely

exhibit substantial time-dependence. The approach we propose below is still consistent with the models

above, but it adds yet another level of flexibility in that it remains agnostic about the joint distribution

fω,λ (ω, λ) , contemporaneously and across time, as well as the marginal distributions of ω and λ.

We now summarize our approach, which we refer to as the “instrumental variables" approach (heretoafter

1The multiple equilibria problem does not impede method-of-moments based estimators that have frequently been applied

to aggregate data (e.g. Besanko et al. 1998 and 2003).
2The pricing equation is no longer an implicit function, so we can derive the density of prices analytically.
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IV). At the likelihood stage, we estimate the parameters of the choice model:

Phjt = Sjt (λt,pt,Ft;∆) =
exp (δjt)

1 +
PJ

k=1 exp (δkt)

where ∆ = (δ11, ..., δ1T , ..., δJT ). Implicitly, δjt = αj + βpjt + γFjt + λjt so these parameters absorb the

impact of prices and unobserved attributes. Hence, we do not need to model the density of prices and we

do not need to integrate λ out of the likelihood. Instead, we estimate ∆ using:

L (∆) =

ThY
t=1

HY
h=1

JY
j=1

S
yhjt
jt . (9)

As a result, we do in fact propose a proper maximum likelihood estimator, in contrast with Goolsbee and

Petrin (2002). We then obtain the parameters in Θ by running a second-stage regression:

bδjt = αj + βpjt + γFjt + λjt

using the estimated vector, bδjt, as the dependent variable. To take into account the uncertainty around
these estimates, we use a GLS procedure where the weights are simply the estimated covariance matrix

cov(b∆). At this stage, we need to be careful about the endogeneity of prices and their potential correlation
with the error term, λjt. The econometric concern is a standard linear regression problem with correlation

between the error term and a covariate. We resolve this problem by using an standard instrumental variables

procedure where prices are projected onto instruments Zt = (Fjt, wjt) to partial out the component of prices

that is uncorrelated with λjt. This approach has a number of advantages. First, we only assume λ is mean

zero. The distribution of λ is estimated non-parametrically (implicity in the estimation of ∆) and, hence,

the approach allows for an aribitrary form of dependence in λ. These estimates will be less efficient than a

full information approach, but they will be consistent even in cases when the structural pricing models above

are incorrect. The approach also does not require integrating out λ nor the evaluation of a Jacobian, vastly

reducing the computational burden of the evaluation of the likelihood function.

1.2 Example

We now derive the likelihood for the case of the brand profit-maximization model, (7) , where we will assume

there are only 2 brands. First we derive the Jacobian. The j, kth element of Jt is
−β

⎛⎝−dSjt
dpkt

⎞⎠
[β(1−Sjt)]2

= − SjtSkt
(1−Sjt)2

and the j, jth element is 1 + Sjt(1−Sjt)
(1−Sjt)2 , hence:Jt =

⎡⎣ 1 + S1t(1−S1t)
(1−S1t)2 − S1tS2t

(1−S1t)2

− S1tS2t
(1−S2t)2 1 + S2t(1−S2t)

(1−S2t)2

⎤⎦ . The corresponding
likelihood function will have the form:

L (Θ) =

ThY
t=1

Z HY
h=1

JY
j=1

Ã
exp (αj + βpjt + γFjt + λjt)

1 +
PJ

k=1 exp (αk + βpkt + γFkt + λkt)

!yhjt Ã
1p
2π|Σ|

exp

µ
−1
2

¶
r0tΣ
−1rt

!
(10)

...

¯̄̄̄
¯̄
⎡⎣ 1 + S1t(1−S1t)

(1−S1t)2 − S1tS2t
(1−S1t)2

− S1tS2t
(1−S2t)2 1 + S2t(1−S2t)

(1−S2t)2

⎤⎦¯̄̄̄¯̄ fλ (λ) ∂λ. (11)
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For estimation, the likelihood would need to be integrated over the distribution of λ. If the dimension is not

too large, this task could be done numerically, via quadrature. Alternatively, this could be accomplished via

Monte Carlo simulation.

1.3 Simulation Design

We now discuss the details for the creation of the simulated data sets. A total of 7 scenarios were analyzed

to compare the empirical properties of the LIML approach, the FIML approach and the IV approaches. As

a benchmark, we also estimate the standard conditional logit that ignores the error component λ entirely.

The 7 scenarios are as follows. The consumer demand is identical across all seven, only the price-

generation mechanism and the assumptions about λ differ. The first 5 are generated from variations of the

LIML model. The last 2 are generated from variations of the FIML model. In each of these seven cases, we

replicated the data generation 30 times and, correspondingly, we estimate each of the models 30 times. In

the results section below, we report the mean parameter estimates for each model and the mean absolute

deviation from the true parameter values used to generate the data.

Notation

• brands j = 0, 1, 2 (0=no purchase)

• time t = 1, ...T , T = 40

• households h = 1, ...,H, H = 150

1.3.1 Demand

Assumptions:

• uh1t = 2− 2p1t + 0.3promotion1t + λ1t + εh1t

• uh2t = 3− 2p2t + 0.3promotion2t + λ2t + εh2t

• uh0t = εh0t

• εhtj ∼ Type I Extreme V alue

• promotionjt = I(ζjt > .8), ζjt ∼ U(0, 1)

• λ defined below

1.3.2 Scenario 1: LIML with correlation between λ and ω, and autocorrelation in ω

Data are generated from the LIML model, above, except that ω is drawn from a time-dependent distribution

(auto-correlation). This specification is chosen to illustrate the performance of the LIML model when the
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conditional density is correctly-specified, but the joint-distribution is not (in this case the LIML approach

will ignore the time dependence in the data).

Assumptions:

• Fλ,ω (λt, ωt) ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝0,
⎡⎢⎢⎢⎢⎢⎢⎣
0.05 0.01 0.2 0.08

0.01 0.05 0.08 0.2

0.2 0.08 1.5 0.5

0.08 0.2 0.5 1.5

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
• corr (ωt, ωt−1) = 0.5

1.3.3 Scenario 2: LIML with no correlation between λ and ω, and autocorrelation in ω

This is the same as scenario 1, except that it does not have any correlation between λ and ω. In principle,

there is no endogeneity bias; however, there are still the additional demand-shifting error components λjt.

Assumptions:

• Fλ,ω (λt, ωt) ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝0,
⎡⎢⎢⎢⎢⎢⎢⎣
0.05 0.01 0 0

0.01 0.05 0 0

0 0 1.5 0.5

0 0 0.5 1.5

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
• corr (ωt, ωt−1) = 0.5

1.3.4 Scenario 3: LIML with correlation between λ and ω

This is the same as scenario 1, except that there is no auto-correlation in ω.

Assumptions:

• Fλ,ω (λt, ωt) ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝0,
⎡⎢⎢⎢⎢⎢⎢⎣
0.05 0.01 0.2 0.08

0.01 0.05 0.08 0.2

0.2 0.08 1.5 0.5

0.08 0.2 0.5 1.5

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
• corr (ωt, ωt−1) = 0

1.3.5 Scenario 4: LIML with no correlation between λ and ω

This is the same as scenario 3, except that there is no correlation between λ and ω, nor any auto-correlation

in ω.

Assumptions:

7



• Fλ,ω (λt, ωt) ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝0,
⎡⎢⎢⎢⎢⎢⎢⎣
0.05 0.01 0 0

0.01 0.05 0 0

0 0 1.5 0.5

0 0 0.5 1.5

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
• corr (ωt, ωt−1) = 0

1.3.6 Scenario 5: LIML with correlation between λ and ω, prices follow a Markov Process

This is the same as scenario 3, except that there is no auto-correlation in ω and prices follow a Markov

Process. The point of this scenario is to attempt to create a pricing policy that looks “realistic". Observed

prices appear to follow a Markov-switching process between temporary sales and price cuts. Erdem, Imai

and Keane (2003) find they could fit observed prices reasonably well using such a Markov-Process. In terms

of our models, clearly both LIML and FIML will have the wrong density of prices in a week and, moreover,

the wrong joint-distribution.

Assumptions:

• Fλ,ω (λt, ωt) ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝0,
⎡⎢⎢⎢⎢⎢⎢⎣
0.05 0.01 0.2 0.08

0.01 0.05 0.08 0.2

0.2 0.08 1.5 0.5

0.08 0.2 0.5 1.5

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
• corr (ωt, ωt−1) = 0

• ptj =

⎧⎨⎩ µj + φjwjt + ωjt, I(κjt>2.8)

0.6
¡
µj + φjwjt + ωjt

¢
, 1− I(κjt>2.8)

• κjt =

⎧⎨⎩ κjt−1 +'jt, κjt−1 +'jt ≤ 2.8
0 else

,'jt ∼ U (0, 1)

1.3.7 Scenario 6: FIML with correlation between λ and ω

Now we generate data from the FIML model. In addition to the Bertrand mark-up, we also allow for

correlation between λ and ω. In principle, the advantage of the Bertrand approach is that it captures the

correlation between price and λ parsimoniously through this mark-up. But, in this case we also add the

correlation between λ and ω to create an additional source of endogeneity that would not be captured by

the Bertrand mark-up.

Assumptions:

• Fλ,ω (λt, ωt) ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝0,
⎡⎢⎢⎢⎢⎢⎢⎣
0.05 0.01 0.2 0.08

0.01 0.05 0.08 0.2

0.2 0.08 1.5 0.5

0.08 0.2 0.5 1.5

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
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1.3.8 Scenario 7: FIML with no correlation between λ and ω

This is the same as scenario 6, except we no-longer have any correlation between λ and ω. Hence, the FIML

model described previously is the true model.

Assumptions:

• Fλ,ω (λt, ωt) ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝0,
⎡⎢⎢⎢⎢⎢⎢⎣
0.05 0.01 0 0

0.01 0.05 0 0

0 0 1.5 0.5

0 0 0.5 1.5

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
1.4 Simulation Results

We now report the findings from our Monte Carlo simulations in tables (1) to (7). In the tables, we report

not only the demand-side parameters, we also report the covariance terms for λ and ω. These two terms

correspond only to the LIML model as it requires them to resolve potential endogeneity (i.e. we do not

estimate these terms for the other specifications). To conserve space, we do not report the supply-side

coefficients from LIML or FIML, and we do not report the estimated weekly brand intercepts from IV. For

those parameters reported, we include the mean point estimate across the 30 replications as well as the mean

absolute deviation, MAD, from the true parameter value.

We begin with table (1), where the data are generated from the LIML model with autocorrelation.

The conditional logit, as expected, gives biased parameter estimates in the anticipated direction. Mainly,

price sensitivity is underestimated. Interestingly, while the LIML approach partially resolves this bias, it

nevertheless still appears to underestimate the price response. This problem is probably due to the fact

that the covariance terms appear to be underestimated, which in turn allows some of the bias in the price

parameter to be retained. One explanation might be that the autocorrelation, which is not modeled in the

LIML specification, might create additional inefficiency. However, it is surprising to observe that FIML

seems to give more accurate results in terms of its lower MAD on intercepts and on the price parameter.

Even though the FIML model is misspecified, it appears that it seem to have an easier time addressing

the endogeneity problem. Intuitively, this is because the FIML model is more parsimonious. Instead of

estimating the covariance terms between λ and ω, endogeneity is accounted for through the mark-up, which

is a function of demand parameters. Finally, the IV approach clearly gives the most accurate results in terms

of MAD. All point estimates are within a decimal place of the true parameter values.

In table (2) , we relax the autocorrelation condition. Nevertheless, our findings are still comparable to

the previous case. LIML resolves some of the bias, but not all. In contrast, only the IV approach seems to

give results within a decimal place of the true values.

In table table (3), we re-introduce the autocorrelation in ω, but we eliminate the correlation between λ

and ω. In principle, there is no endogeneity problem built into this data. The logit model performs much

better now, as expected. The remaining biases in the logit results are due to the fact that the logit does not
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account for the error components, λ, in demand. In this case, the LIML approach is able to recover the true

parameters quite well. In contrast, the FIML approach does much worse. This result is expected since the

FIML approach builds in endogeneity by construction. The only way for this specification issue to be offset

would be with a price parameter of −∞. Since the price parameter also enters demand, instead we simply
get an overly-elastic demand estimate. Finally, the IV approach performs quite well. In fact, it seems to

perform roughly as well as LIML.

In table (4), we remove autocorrelation. Now, LIML is the true model. Nevertheless, IV seems to perform

quite comparably. In fact, for the price parameter, the IV approach seems to get closer to the true value on

average.

In table table (5) , we allow prices to follow a Markov Process to capture the spirit of temporary price-

cutting. In this case, the IV approach still gives results that are within a decimal place of the truth.

Interestingly, the FIML results come reasonably close to the IV approach in terms of recovering the true

parameters. In contrast, the LIML approach resolves some of the endogeneity biases; but FIML seems to

perform relatively better.

In table (6), we shift our focus, generating our data from the FIML model. We also allow for additional

correlation between λ and ω, so that the FIML model has the correct marginal density, but not the correct

joint density. In this case, not only does the logit give biased results, it predicts the wrong sign on the price

parameter. Also, the LIML approach resolves some of this bias, but it clearly does not entirely resolve the

problem. FIML fairs much better; although the additional correlation between λ and ω introduces some

specification bias. Recall that the FIML estimator does assumes all endogeneity can be recovered through

the mark-up term. The advantage of this approach is parsimony. Finally, the IV approach, as always, gets

within one decimal place of the true values.

In table (7), we remove the correlation between λ and ω. Now the FIML model is the true model. As

such, it is not surprising that the FIML approach is the most accurate in terms of MAD. While this model

outperforms the IV in this case, the IV approach still gives reasonably close estimates.

To summarize, the IV approach is robust across several different model specifications. The LIML and

FIML approaches, by contrast, perform well when the data are generated from these models, but perform

poorly in the presence of misspecification.

2 Heterogeneity and Endogeneity

Here we explore the role of the UBCs and the identification of heterogeneity. An advantage of household

panel data is that we have within-household variation in choices, which can be used to identify heterogeneity

in tastes, and across-household variation in choices within a week, which can be used to identify UBCs. In

general, we are concerned about how failure to account for endogeneity in prices (i.e. correlation between

prices and UBCs) might bias the heterogeneity parameters. In the previous section, we found that the

10



endogeneity bias leads to understated price sensitivities. When data are generated from a population with

heterogeneous price sensitivities, the bias in mean price effects could affect estimates of within-household

deviations from these means. In addition, scanner panels are often unbalanced. In other words, consumers

do not systematically shop in a focal chain each week. A potential concern is that some consumers’ shop-

ping decisions may correlate with UBCs. For instance, UBCs could be higher during summer, when some

households leave for vacations. Alternatively, consumers may tend to shop in other stores when UBCs are

low. In the context of a non-linear model, such as the random effects multinomial logit, it is not possible to

derive these biases analytically. Hence, we explore these scenarios in the context of Monte Carlo simulation.

In designing the simulation, we first look at a balanced panel data set. In general, however, scanner

panels are not balanced. A potential concern is that the manner in which households may enter or exit

the panel (or the timing of shopping trips) may be systematically correlated with the distribution of UBCs.

Hence, we also look at unbalanced panels. We begin with a case in which some randomly-selected households

simply do not shop during high UBC weeks. Then, we look at the case in which the most price insensitive

customers do not shop during high UBC weeks. Finally, we look at the case in which the most price sensitive

customers do not shop during high UBC weeks. The goal of looking at the unbalanced panels is to see if

any of these cases might amplify or, alternatively, mitigate some of the bias in the estimated heterogeneity.

2.1 Simulation Design

To address these concerns, we generate data from a heterogeneous logit demand system in the presence of

price endogeneity. We consider 4 cases. First, we look at the case of a balanced panel (every household

shops in every week). Then, we look at an unbalanced panel where a random subset of households do not

shop during weeks when UBCs are high. Third, we look at an unbalanced panel where price sensitive

shoppers tend not to shop during high-UBC weeks (i.e. there is positive correlation between UBCs and

price sensitivities). Fourth, we look at an unbalanced panel where price insensitive shoppers tend not to

shop during high-UBC weeks (i.e. there is negative correlation between price sensitivities and UBCs). To

generate price endogeneity, we create data from the LIML specification (above). However, estimation will

be carried out using our 2-step estimator.

To simplify, the analysis, we only include heterogeneity on the price sensitivity parameter. In general,

we make the following assumptions for demand:

•

⎡⎢⎢⎢⎢⎢⎢⎣
α1h

α2h

βh

γh

⎤⎥⎥⎥⎥⎥⎥⎦ ˜N
⎛⎜⎜⎜⎜⎜⎜⎝

α1

α2

β

γ

,Ω

⎞⎟⎟⎟⎟⎟⎟⎠ = N

⎛⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎣
2

3

−2
.3

⎤⎥⎥⎥⎥⎥⎥⎦ ,
⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 0.8 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
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• parameters to estimate: Θ =

⎡⎢⎢⎢⎢⎢⎢⎣
α1

α2

β

γ

⎤⎥⎥⎥⎥⎥⎥⎦ , Σ = chol(Ω) =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0

0 0 0 0

0 0 Σ33 0

0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
• pjt = µj + φjwjt + ωjt

• Fλ,ω (λt, ωt) ∼ N

⎛⎜⎜⎜⎜⎜⎜⎝0,
⎡⎢⎢⎢⎢⎢⎢⎣
0.05 0.01 0.2 0.08

0.01 0.05 0.08 0.2

0.2 0.08 1.5 0.5

0.08 0.2 0.5 1.5

⎤⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎠
2.1.1 Scenario 1:No Correlation Between UBC and price-sensitivity

Assumptions:

• All 150 households shop once per week for 40 weeks

2.1.2 Scenario 2:No Correlation Between UBC and price-sensitivity, unbalanced panel

Assumptions:

• A random subset of households does not shop when λjt is “high"

• random subset of households: randomly select 40 of the 150 households

• “high" λjt: λ1t > λ80
th percentile

1 or λ2t > λ80
th percentile

2

2.1.3 Scenario 3:Positive Correlation Between UBC and price-sensitivity

Assumptions:

• Households with “high" price sensitivity do not shop when λjt is “high"

• “high” price sensitivity: |βh| > β60
th percentile

• “high” λjt: λ1t > λ80
th percentile

1 or λ2t > λ80
th percentile

2

2.1.4 Scenario 4:Negative Correlation Between UBC and price-sensitivity

Assumptions:

• Households with “low" price sensitivity do not shop when λjt is “high"

• “low” price sensitivity: |βh| < β40
th percentile

• “high” λjt: λ1t > λ80
th percentile

1 or λ2t > λ80
th percentile

2
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2.2 Simulation Results

We now discuss our findings. For each of the 4 cases described above, we generate 30 random datasets. For

each of these 30 datasets, we estimate the heterogeneous direct MLE and the heterogeneous 2-step IV/MLE

models. For each model, we report the mean parameter estimates across the 30 replications. We also report

the mean absolute deviation from the true parameter values.

In table 8, we report the findings for the balanced panel. As expected, the mean effects are all estimated

with bias in the case of direct MLE. However, the 2-step IV/MLE approach does reasonably well recovering

the true parameter values. These results are consistent with our previous findings in the homogeneous case.

Interestingly, the direct MLE approach also seems to over-estimate the variance in the price parameter. The

MAD in this term relative to the true value is almost twice as high as the 2-step IV/MLE case.

In table 9, we report the findings for the unbalanced panel, where a random subset of households does

not shop during high UBC weeks. Despite the unbalanced panel structure, the results look comparable to

the balanced case.

In table 10, we report the findings for the unbalanced panel, where the most price insensitive households

do not shop during high UBC weeks. This creates positive correlation between the UBCs and household-

specific price parameters. This correlation creates an even larger upward bias in the estimated variance in

price sensitivity for the direct MLE case, the MAD of which is now ten times the size of the 2-step MLE.

In table 11, we report the findings for the unbalanced panel, where the most price sensitive households

do not shop during high UBC weeks. This creates negative correlation between the UBCs and household-

specific price parameters. Interestingly, the variance in the price parameter is now much closer to the true

values than for the previous cases. This result is perhaps not surprising given that the heterogeneity is

over-estimated in the case of the balanced panel. Our results suggest that the negative correlation is in face

off-setting some of this upward-bias.

To summarize, our simulation results indicate that even in the presence of heterogeneity, in addition to

endogeneity, the proposed 2-step IV/MLE estimator performs well.
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LIML with correlation between UBCs and supply shocks and autocorrelation

logit LIML FIML IV

TRUE param MAD param MAD param MAD param MAD

α1 2 0.2457 1.754 1.127 0.873 2.493 0.493 1.906 0.094

α2 3 0.4917 2.508 1.934 1.066 3.655 0.655 3.058 0.058

price -2 -0.6968 1.303 -1.400 0.601 -2.407 0.407 -2.013 0.013

promo 0.3 0.2752 0.025 0.299 0.001 0.251 0.049 0.333 0.033

cov(ω1t,λ1t) 0.2 0.1507 0.049

cov(ω1t,λ2t) 0.08 0.0068 0.073

cov(ω2t,λ1t) 0.08 -0.0153 0.095

cov(ω2t,λ2t) 0.2 0.2666 0.067

Table 1: Scenario 1

LIML with NO correlation between UBCs and supply shocks and autocorrelation

logit LIML FIML IV

TRUE param MAD param MAD param MAD param MAD

α1 2 1.6734 0.327 1.893 0.107 3.246 1.246 1.863 0.137

α2 3 2.4567 0.543 2.784 0.216 4.733 1.733 2.811 0.190

price -2 -1.6708 0.329 -1.808 0.192 -2.807 0.807 -1.900 0.100

promo 0.3 0.2189 0.081 0.246 0.054 0.186 0.114 0.309 0.009

cov(ω1t,λ1t) 0 -0.015 0.015

cov(ω1t,λ2t) 0 -0.0189 0.019

cov(ω2t,λ1t) 0 -0.0101 0.010

cov(ω2t,λ2t) 0 -0.0637 0.064

Table 2: Scenario 3
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LIML with correlation between UBCs and supply shocks and NO autocorrelation

logit LIML FIML IV

TRUE param MAD param MAD param MAD param MAD

α1 2 0.0332 1.967 0.886 1.114 2.715 0.715 1.905 0.095

α2 3 0.2496 2.750 1.550 1.450 4.033 1.033 3.051 0.051

price -2 -0.5875 1.413 -1.215 0.785 -2.554 0.554 -2.024 0.024

promo 0.3 0.2812 0.019 0.304 0.004 0.458 0.158 0.346 0.046

cov(ω1t,λ1t) 0.2 0.1863 0.014

cov(ω1t,λ2t) 0.08 0.13 0.050

cov(ω2t,λ1t) 0.08 0.15 0.070

cov(ω2t,λ2t) 0.2 0.3185 0.119

Table 3: Scenario 2

LIML with NO correlation between UBCs and supply shocks and NO autocorrelation

logit LIML FIML IV

TRUE param MAD param MAD param MAD param MAD

α1 2 1.6518 0.348 1.925 0.075 3.359 1.359 1.888 0.112

α2 3 2.3599 0.640 2.683 0.317 4.827 1.827 2.755 0.245

price -2 -1.6459 0.354 -1.858 0.142 -2.995 0.995 -1.914 0.086

promo 0.3 0.2051 0.095 0.213 0.087 0.404 0.104 0.281 0.019

cov(ω1t,λ1t) 0 -0.0271 0.027

cov(ω1t,λ2t) 0 -0.0337 0.034

cov(ω2t,λ1t) 0 -0.0261 0.026

cov(ω2t,λ2t) 0 -0.0722 0.072

Table 4: Scenario 4
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LIML with correlation between UBCs and supply shocks and Markovian prices

logit LIML FIML IV

TRUE param MAD param MAD param MAD param MAD

α1 2 0.3845 1.616 0.886 1.114 2.346 0.346 1.843 0.157

α2 3 0.7196 2.280 1.550 1.450 3.475 0.475 2.936 0.064

price -2 -0.7816 1.218 -1.215 0.785 -2.198 0.198 -1.945 0.055

promo 0.3 0.2836 0.016 0.304 0.004 0.195 0.105 0.358 0.058

cov(ω1t,λ1t) 0.2 0.1863 0.014

cov(ω1t,λ2t) 0.08 0.13 0.050

cov(ω2t,λ1t) 0.08 0.15 0.070

cov(ω2t,λ2t) 0.2 0.3185 0.119

Table 5: Scenario 5

Bertrand with correlation between UBCs and supply shocks

logit LIML FIML IV

TRUE param MAD param MAD param MAD param MAD

α1 2 -1.6032 3.603 0.135 1.866 1.592 0.409 1.835 0.166

α2 3 -1.434 4.434 0.843 2.158 2.522 0.478 2.940 0.061

price -2 0.1265 2.127 -0.952 1.048 -1.795 0.205 -1.972 0.028

promo 0.3 0.2187 0.081 0.206 0.094 0.291 0.009 0.285 0.015

cov(ω1t,λ1t) 0.2 0.2122 0.012

cov(ω1t,λ2t) 0.08 0.1522 0.072

cov(ω2t,λ1t) 0.08 0.2023 0.122

cov(ω2t,λ2t) 0.2 0.4639 0.264

Table 6: Scenario 6
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Bertrand with NO correlation between UBCs and supply shocks

logit LIML FIML IV

TRUE param MAD param MAD param MAD param MAD

α1 2 -0.3147 2.315 1.014 0.986 1.877 0.123 1.697 0.303

α2 3 0.0629 2.937 1.827 1.173 2.987 0.013 2.628 0.372

price -2 -0.5495 1.451 -1.444 0.556 -1.964 0.036 -1.854 0.146

promo 0.3 0.2227 0.077 0.176 0.124 0.317 0.017 0.285 0.015

cov(ω1t,λ1t) 0 0.0831 0.083

cov(ω1t,λ2t) 0 -0.0043 0.004

cov(ω2t,λ1t) 0 -0.0169 0.017

cov(ω2t,λ2t) 0 0.0065 0.007

Table 7: Scenario 7

TRUE Direct 2-step

MLE IV/MLE

param param MAD param MAD

int 1 2.00 0.1138 1.886 2.0633 0.063

int 2 3.00 0.2713 2.729 3.0753 0.075

price -2.00 -0.5954 1.405 -2.05 0.050

promo 0.30 0.3537 0.054 0.4472 0.147

variance price 0.80 1.0212 0.221 0.9268 0.127

Table 8: No Correlation Between UBC and price-sensitivity, balanced panel

TRUE Direct 2-step

MLE IV/MLE

param param MAD param MAD

int 1 2.00 0.1665 1.834 2.1972 0.197

int 2 3.00 0.3164 2.684 3.2505 0.251

price -2.00 -0.528 1.472 -2.1262 0.126

promo 0.30 0.3478 0.048 0.4155 0.116

variance price 0.80 1.082 0.282 0.8984 0.098

Table 9: No Correlation Between UBC and price-sensitivity, unbalanced panel
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TRUE Direct 2-step

MLE IV/MLE

param param MAD param MAD

int 1 2.00 0.1069 1.893 1.1322 0.868

int 2 3.00 0.1488 2.851 1.7328 1.267

price -2.00 -0.4803 1.520 -1.5311 0.469

promo 0.30 0.3265 0.027 0.234 0.066

variance price 0.80 1.3871 0.587 0.7451 0.055

Table 10: Positive Correlation Between UBC and price-sensitivity

TRUE Direct 2-step

MLE IV/MLE

param param MAD param MAD

int 1 2.00 0.3056 1.694 1.4312 0.569

int 2 3.00 0.5079 2.492 2.3404 0.660

price -2.00 -0.5233 1.477 -1.5385 0.462

promo 0.30 0.3531 0.053 0.3603 0.060

variance price 0.80 0.7439 0.056 0.8178 0.018

Table 11: Negative Correlation Between UBC and price-sensitivity
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